Failure of the local chain rule for the fractional variation

IF 0.5 4区 数学 Q3 MATHEMATICS
G. Comi, Giorgio Stefani
{"title":"Failure of the local chain rule for the fractional variation","authors":"G. Comi, Giorgio Stefani","doi":"10.4171/pm/2096","DOIUrl":null,"url":null,"abstract":"We prove that the local version of the chain rule cannot hold for the fractional variation defined in arXiv:1809.08575. In the case $n = 1$, we prove a stronger result, exhibiting a function $f \\in BV^{\\alpha}(\\mathbb{R})$ such that $|f| \\notin BV^{\\alpha}(\\mathbb{R})$. The failure of the local chain rule is a consequence of some surprising rigidity properties for non-negative functions with bounded fractional variation which, in turn, are derived from a fractional Hardy inequality localized to half-spaces. Our approach exploits the results of arXiv:2111.13942 and the distributional approach of the previous papers arXiv:1809.08575, arXiv:1910.13419, arXiv:2011.03928, arXiv:2109.15263. As a byproduct, we refine the fractional Hardy inequality obtained in arXiv:1611.07204, arXiv:1806.07588 and we prove a fractional version of the closely related Meyers-Ziemer trace inequality.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2096","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We prove that the local version of the chain rule cannot hold for the fractional variation defined in arXiv:1809.08575. In the case $n = 1$, we prove a stronger result, exhibiting a function $f \in BV^{\alpha}(\mathbb{R})$ such that $|f| \notin BV^{\alpha}(\mathbb{R})$. The failure of the local chain rule is a consequence of some surprising rigidity properties for non-negative functions with bounded fractional variation which, in turn, are derived from a fractional Hardy inequality localized to half-spaces. Our approach exploits the results of arXiv:2111.13942 and the distributional approach of the previous papers arXiv:1809.08575, arXiv:1910.13419, arXiv:2011.03928, arXiv:2109.15263. As a byproduct, we refine the fractional Hardy inequality obtained in arXiv:1611.07204, arXiv:1806.07588 and we prove a fractional version of the closely related Meyers-Ziemer trace inequality.
分数阶变化的局部链式法则失效
我们证明了链式规则的局部版本不能适用于arXiv:1809.08575中定义的分数变化。在$n=1$的情况下,我们证明了一个更强的结果,在BV^{\alpha}(\mathbb{R})$中展示了一个函数$f\,使得$|f|notin BV^}。局部链式规则的失败是具有有界分数变差的非负函数的一些令人惊讶的刚度性质的结果,而这些性质又是从局部到半空间的分数Hardy不等式导出的。我们的方法利用了arXiv:22111.13942的结果和先前论文arXiv:1809.08575、arXiv:191011.33419、arXiv:2011.03928、arXiv:2109.1263的分布方法。作为副产品,我们改进了在arXiv:161107204,arXiv:1060607588中获得的分数阶Hardy不等式,并证明了密切相关的Meyers-Ziemer迹不等式的分数阶版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信