O. Mata-Gutiérrez, L. Roa-Leguizamón, H. Torres-López
{"title":"On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces","authors":"O. Mata-Gutiérrez, L. Roa-Leguizamón, H. Torres-López","doi":"10.1017/S0017089523000010","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point \n$x \\in X$\n to show that there exists an embedding from the Grassmannian variety \n$\\mathbb{G}(E_x,m)$\n into the moduli space of torsion-free sheaves \n$\\mathfrak{M}_{X,H}(n;\\,c_1,c_2+m)$\n which induces an injective morphism from \n$X \\times M_{X,H}(n;\\,c_1,c_2)$\n to \n$Hilb_{\\, \\mathfrak{M}_{X,H}(n;\\,c_1,c_2+m)}$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point
$x \in X$
to show that there exists an embedding from the Grassmannian variety
$\mathbb{G}(E_x,m)$
into the moduli space of torsion-free sheaves
$\mathfrak{M}_{X,H}(n;\,c_1,c_2+m)$
which induces an injective morphism from
$X \times M_{X,H}(n;\,c_1,c_2)$
to
$Hilb_{\, \mathfrak{M}_{X,H}(n;\,c_1,c_2+m)}$
.