{"title":"The effects of climate change on photovoltaic solar production in hot regions","authors":"M. Al-Baghdadi, A. Ridha, A. Al-Khayyat","doi":"10.29354/diag/152276","DOIUrl":null,"url":null,"abstract":"The work of solar cells and their production of electrical energy have been affected by climate change, especially in hot regions which became significantly hotter and still receive relatively high levels of solar radiation throughout the year. Higher ambient temperature and solar radiation result in higher PV cell temperature and, therefore, the reduction in PV module power output and efficiency. This study investigates how a PV module performs throughout the year in a hot region by considering the variations in cell temperature resulting from changes in ambient temperature and solar radiation every day. The tilt angles and two-axis tracking have also been examined. Results indicate that the two-axis solar tracking system is critical to use in hot regions for obtaining higher output power. Therefore, part of this power can be used to cool solar panels using various methods to keep their efficiency high, such as operating air fans or operating pumps to cool them with coolant.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/152276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The work of solar cells and their production of electrical energy have been affected by climate change, especially in hot regions which became significantly hotter and still receive relatively high levels of solar radiation throughout the year. Higher ambient temperature and solar radiation result in higher PV cell temperature and, therefore, the reduction in PV module power output and efficiency. This study investigates how a PV module performs throughout the year in a hot region by considering the variations in cell temperature resulting from changes in ambient temperature and solar radiation every day. The tilt angles and two-axis tracking have also been examined. Results indicate that the two-axis solar tracking system is critical to use in hot regions for obtaining higher output power. Therefore, part of this power can be used to cool solar panels using various methods to keep their efficiency high, such as operating air fans or operating pumps to cool them with coolant.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.