{"title":"Impact of circRNA on the complex regulatory network of the cell","authors":"L. Porta, A. Caterina","doi":"10.21037/NCRI.2019.05.01","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are small nucleotides that can bind to messenger RNA (mRNA) preventing its translation. Different mRNA targets can have the same miRNA binding site leading to a miRNA-mediated cross-talk between competitive endogenous RNA (ceRNA) species (1-3). Circular RNAs (circRNAs) are yet another example of ceRNAs (4), first discovered by electron microscopy in an RNA virus in 1976 (5). These are single stranded non-coding RNAs that have their 3' and 5' ends covalently linked due to back-splicing, thus acquiring a circular form. Due to their low transcript abundance, circRNAs were originally thought to be a byproduct of aberrant splicing of mRNA (6). In recent years, however, progress in high-throughput technologies and bioinformatics lead to the identification of many new circRNAs.","PeriodicalId":74314,"journal":{"name":"Non-coding RNA investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/NCRI.2019.05.01","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/NCRI.2019.05.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
MicroRNAs (miRNAs) are small nucleotides that can bind to messenger RNA (mRNA) preventing its translation. Different mRNA targets can have the same miRNA binding site leading to a miRNA-mediated cross-talk between competitive endogenous RNA (ceRNA) species (1-3). Circular RNAs (circRNAs) are yet another example of ceRNAs (4), first discovered by electron microscopy in an RNA virus in 1976 (5). These are single stranded non-coding RNAs that have their 3' and 5' ends covalently linked due to back-splicing, thus acquiring a circular form. Due to their low transcript abundance, circRNAs were originally thought to be a byproduct of aberrant splicing of mRNA (6). In recent years, however, progress in high-throughput technologies and bioinformatics lead to the identification of many new circRNAs.