{"title":"Global Regular Axially-Symmetric Solutions to the Navier–Stokes Equations with Small Swirl","authors":"Bernard Nowakowski, Wojciech M. Zajaczkowski","doi":"10.1007/s00021-023-00793-9","DOIUrl":null,"url":null,"abstract":"<div><p>Axially symmetric solutions to the Navier–Stokes equations in a bounded cylinder are considered. On the boundary the normal component of the velocity and the angular components of the velocity and vorticity are assumed to vanish. If the norm of the initial swirl is sufficiently small, then the regularity of axially symmetric, weak solutions is shown. The key tool is a new estimate for the stream function in certain weighted Sobolev spaces.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00793-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00793-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Axially symmetric solutions to the Navier–Stokes equations in a bounded cylinder are considered. On the boundary the normal component of the velocity and the angular components of the velocity and vorticity are assumed to vanish. If the norm of the initial swirl is sufficiently small, then the regularity of axially symmetric, weak solutions is shown. The key tool is a new estimate for the stream function in certain weighted Sobolev spaces.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.