Cramér-type moderate deviation for quadratic forms with a fast rate

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Fang, Song Liu, Q. Shao
{"title":"Cramér-type moderate deviation for quadratic forms with a fast rate","authors":"Xiao Fang, Song Liu, Q. Shao","doi":"10.3150/22-bej1549","DOIUrl":null,"url":null,"abstract":"Let $X_1,\\dots, X_n$ be independent and identically distributed random vectors in $\\mathbb{R}^d$. Suppose $\\mathbb{E} X_1=0$, $\\mathrm{Cov}(X_1)=I_d$, where $I_d$ is the $d\\times d$ identity matrix. Suppose further that there exist positive constants $t_0$ and $c_0$ such that $\\mathbb{E} e^{t_0|X_1|}\\leq c_0<\\infty$, where $|\\cdot|$ denotes the Euclidean norm. Let $W=\\frac{1}{\\sqrt{n}}\\sum_{i=1}^n X_i$ and let $Z$ be a $d$-dimensional standard normal random vector. Let $Q$ be a $d\\times d$ symmetric positive definite matrix whose largest eigenvalue is 1. We prove that for $0\\leq x\\leq \\varepsilon n^{1/6}$, \\begin{equation*} \\left| \\frac{\\mathbb{P}(|Q^{1/2}W|>x)}{\\mathbb{P}(|Q^{1/2}Z|>x)}-1 \\right|\\leq C \\left( \\frac{1+x^5}{\\det{(Q^{1/2})}n}+\\frac{x^6}{n}\\right) \\quad \\text{for}\\ d\\geq 5 \\end{equation*} and \\begin{equation*} \\left| \\frac{\\mathbb{P}(|Q^{1/2}W|>x)}{\\mathbb{P}(|Q^{1/2}Z|>x)}-1 \\right|\\leq C \\left( \\frac{1+x^3}{\\det{(Q^{1/2})}n^{\\frac{d}{d+1}}}+\\frac{x^6}{n}\\right) \\quad \\text{for}\\ 1\\leq d\\leq 4, \\end{equation*} where $\\varepsilon$ and $C$ are positive constants depending only on $d, t_0$, and $c_0$. This is a first extension of Cram\\'er-type moderate deviation to the multivariate setting with a faster convergence rate than $1/\\sqrt{n}$. The range of $x=o(n^{1/6})$ for the relative error to vanish and the dimension requirement $d\\geq 5$ for the $1/n$ rate are both optimal. We prove our result using a new change of measure, a two-term Edgeworth expansion for the changed measure, and cancellation by symmetry for terms of the order $1/\\sqrt{n}$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Let $X_1,\dots, X_n$ be independent and identically distributed random vectors in $\mathbb{R}^d$. Suppose $\mathbb{E} X_1=0$, $\mathrm{Cov}(X_1)=I_d$, where $I_d$ is the $d\times d$ identity matrix. Suppose further that there exist positive constants $t_0$ and $c_0$ such that $\mathbb{E} e^{t_0|X_1|}\leq c_0<\infty$, where $|\cdot|$ denotes the Euclidean norm. Let $W=\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i$ and let $Z$ be a $d$-dimensional standard normal random vector. Let $Q$ be a $d\times d$ symmetric positive definite matrix whose largest eigenvalue is 1. We prove that for $0\leq x\leq \varepsilon n^{1/6}$, \begin{equation*} \left| \frac{\mathbb{P}(|Q^{1/2}W|>x)}{\mathbb{P}(|Q^{1/2}Z|>x)}-1 \right|\leq C \left( \frac{1+x^5}{\det{(Q^{1/2})}n}+\frac{x^6}{n}\right) \quad \text{for}\ d\geq 5 \end{equation*} and \begin{equation*} \left| \frac{\mathbb{P}(|Q^{1/2}W|>x)}{\mathbb{P}(|Q^{1/2}Z|>x)}-1 \right|\leq C \left( \frac{1+x^3}{\det{(Q^{1/2})}n^{\frac{d}{d+1}}}+\frac{x^6}{n}\right) \quad \text{for}\ 1\leq d\leq 4, \end{equation*} where $\varepsilon$ and $C$ are positive constants depending only on $d, t_0$, and $c_0$. This is a first extension of Cram\'er-type moderate deviation to the multivariate setting with a faster convergence rate than $1/\sqrt{n}$. The range of $x=o(n^{1/6})$ for the relative error to vanish and the dimension requirement $d\geq 5$ for the $1/n$ rate are both optimal. We prove our result using a new change of measure, a two-term Edgeworth expansion for the changed measure, and cancellation by symmetry for terms of the order $1/\sqrt{n}$.
快速二次型的Cramér型中偏差
设$X_1,\dots,X_n$是$\mathbb{R}^d$中独立且同分布的随机向量。假设$\mathbb{E}X_1=0$,$\mathrm{Cov}(X_1)=I_d$,其中$I_d$是$d\times d$恒等矩阵。进一步假设存在正常数$t_0$和$c_0$,使得$\mathbb{E}E^{t_0|X_1|}\leq c_0x)}{\mathbb}P}(|Q^{1/2}Z|>X)}-1\right|\leq c\left(\frac{1+X^5}{\det{(Q^{1/2}))}n}+\frac{\mathbb{P}(|Q^{1/2}W |>X)}^{\frac{d}{d+1}}}}+\frac(x^6){n}\right)\quad\text{for}\1\leq d\leq 4,\end{equation*}其中$\varepsilon$和$C$是正常数,仅取决于$d、t_0$和$C_0$。这是Cram型中等偏差对多元设置的第一次扩展,其收敛速度快于$1/\sqrt{n}$。相对误差消失的$x=o(n^{1/6})$范围和$1/n$比率的尺寸要求$d\geq 5$都是最优的。我们使用一个新的测度变化,对变化测度的两项Edgeworth展开,以及对阶为$1/\sqrt{n}$的项的对称消去来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信