Control system design of duct cleaning robot capable of overcoming L and T-shaped ducts

Myeong In Seo, Woo-jin Jang, Junhwan Ha, Kyong-Jun Park, Dong Hwan Kim
{"title":"Control system design of duct cleaning robot capable of overcoming L and T-shaped ducts","authors":"Myeong In Seo, Woo-jin Jang, Junhwan Ha, Kyong-Jun Park, Dong Hwan Kim","doi":"10.11591/ijra.v9i2.pp123-134","DOIUrl":null,"url":null,"abstract":"This study introduces the control method of duct cleaning robot that enables real-time position tracking and self-driving over L-shaped and T-shaped duct sections. The developed robot has three legs and is designed to flexibly respond to duct sizes. The position of the robot inside the duct is identified using the UWB communication module and the location estimation algorithm. Although UWB communication has relatively large distance error within the metal, the positional error was reduced by introducing appropriate filters to estimate the robot position accurately.  TCP/IP communication allows commands to be sent between the PC and the robot and to receive live images of the camera attached to the robot. Using Haar-like and classifiers, the robot can recognize the type of duct that is difficult to overcome, such as L-shaped and T-shaped duct, and it moves successfully inside the duct according to the corresponding moving algorithms.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijra.v9i2.pp123-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the control method of duct cleaning robot that enables real-time position tracking and self-driving over L-shaped and T-shaped duct sections. The developed robot has three legs and is designed to flexibly respond to duct sizes. The position of the robot inside the duct is identified using the UWB communication module and the location estimation algorithm. Although UWB communication has relatively large distance error within the metal, the positional error was reduced by introducing appropriate filters to estimate the robot position accurately.  TCP/IP communication allows commands to be sent between the PC and the robot and to receive live images of the camera attached to the robot. Using Haar-like and classifiers, the robot can recognize the type of duct that is difficult to overcome, such as L-shaped and T-shaped duct, and it moves successfully inside the duct according to the corresponding moving algorithms.
L型和t型风管清扫机器人控制系统设计
本研究介绍了一种管道清扫机器人的控制方法,该方法可以实现l型和t型管道段的实时位置跟踪和自动驾驶。开发的机器人有三条腿,可以灵活地响应管道尺寸。利用超宽带通信模块和位置估计算法识别机器人在管道内的位置。虽然超宽带通信在金属内部有较大的距离误差,但通过引入适当的滤波器来准确估计机器人的位置,减小了位置误差。TCP/IP通信允许在PC和机器人之间发送命令,并接收连接在机器人上的摄像机的实时图像。利用Haar-like和分类器,机器人可以识别出难以克服的管道类型,如l型和t型管道,并根据相应的移动算法在管道内成功移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信