Effect of channel height on the critical particle diameter in a deterministic lateral device

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Jae Hyun Bae, Alexander Zhbanov, Sung Yang
{"title":"Effect of channel height on the critical particle diameter in a deterministic lateral device","authors":"Jae Hyun Bae,&nbsp;Alexander Zhbanov,&nbsp;Sung Yang","doi":"10.1186/s40486-022-00163-6","DOIUrl":null,"url":null,"abstract":"<div><p>The separation of biological cells or microorganisms in a liquid based on their size by deterministic lateral displacement is widely used in laboratories. The analytical equation for the critical diameter is derived under the assumption that flow between two posts is better described by flow in a rectangular tube than between parallel plates. The height position of the particle is an additional parameter that affects the critical diameter. Preliminary experiments were carried out on the separation of particles in deep and shallow microchannels. This study shows that the critical diameter is not a constant value for a given design but is different on each plane parallel to the top and bottom of the channel. The theoretical model was used to analyze experimental data on the separation of particles larger than 4.2 µm from particles ranging in size from 2.5 to 7.9 µm.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00163-6","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-022-00163-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The separation of biological cells or microorganisms in a liquid based on their size by deterministic lateral displacement is widely used in laboratories. The analytical equation for the critical diameter is derived under the assumption that flow between two posts is better described by flow in a rectangular tube than between parallel plates. The height position of the particle is an additional parameter that affects the critical diameter. Preliminary experiments were carried out on the separation of particles in deep and shallow microchannels. This study shows that the critical diameter is not a constant value for a given design but is different on each plane parallel to the top and bottom of the channel. The theoretical model was used to analyze experimental data on the separation of particles larger than 4.2 µm from particles ranging in size from 2.5 to 7.9 µm.

确定性横向装置中通道高度对临界颗粒直径的影响
基于生物细胞或微生物在液体中的大小,通过确定的横向位移分离生物细胞或微生物在实验室中被广泛使用。在假定用矩形管内流动比用平行板间流动更能描述两柱间流动的情况下,导出了临界直径的解析方程。粒子的高度位置是影响临界直径的附加参数。对深、浅微通道中颗粒的分离进行了初步实验。该研究表明,对于给定的设计,临界直径不是一个恒定值,而是在平行于通道顶部和底部的每个平面上是不同的。该理论模型用于分析4.2µm以上颗粒与2.5 ~ 7.9µm颗粒的分离实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信