{"title":"Statistical solution and Liouville-type theorem for the nonautonomous discrete Selkov model","authors":"Congcong Li, Chunqiu Li, Jintao Wang","doi":"10.1080/14689367.2022.2147811","DOIUrl":null,"url":null,"abstract":"In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2147811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.