Optimization of process parameters in turning of magnesium AZ91D alloy for better surface finish using genetic algorithm

Q3 Environmental Science
Pradeep Kumar Madhesan, Venkatesan Rajamanickam, Manimurugan Manickam
{"title":"Optimization of process parameters in turning of magnesium AZ91D alloy for better surface finish using genetic algorithm","authors":"Pradeep Kumar Madhesan, Venkatesan Rajamanickam, Manimurugan Manickam","doi":"10.32933/actainnovations.43.5","DOIUrl":null,"url":null,"abstract":"This research examined at the optimum cutting parameters for producing minimum surface roughness and maximum Material Removal Rate (MRR) when turning magnesium alloy AZ91D. Cutting speed (m/min), feed (mm/rev), and cut depth (mm) have all been considered in the experimental study. To find the best cutting\nparameters, Taguchi's technique and Response Surface Methodology (RSM), an evolutionary optimization techniques Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were employed.\nGA gives better results of 34.04% lesser surface roughness and 15.2% higher MRR values when compared with Taguchi method. The most optimal values of surface roughness and MRR is received in multi objective optimization NSGA-II were 0.7341 µm and 9460 mm3 /min for the cutting parameters cutting speed at 140.73m/min, feed rate at 0.06mm/min and 0.99mm depth of cut. Multi objective NSGA-II optimization provides several non-dominated points on Pareto Front model that can be utilized as decision making for choice\namong objectives","PeriodicalId":32240,"journal":{"name":"Acta Innovations","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32933/actainnovations.43.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

This research examined at the optimum cutting parameters for producing minimum surface roughness and maximum Material Removal Rate (MRR) when turning magnesium alloy AZ91D. Cutting speed (m/min), feed (mm/rev), and cut depth (mm) have all been considered in the experimental study. To find the best cutting parameters, Taguchi's technique and Response Surface Methodology (RSM), an evolutionary optimization techniques Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were employed. GA gives better results of 34.04% lesser surface roughness and 15.2% higher MRR values when compared with Taguchi method. The most optimal values of surface roughness and MRR is received in multi objective optimization NSGA-II were 0.7341 µm and 9460 mm3 /min for the cutting parameters cutting speed at 140.73m/min, feed rate at 0.06mm/min and 0.99mm depth of cut. Multi objective NSGA-II optimization provides several non-dominated points on Pareto Front model that can be utilized as decision making for choice among objectives
应用遗传算法优化AZ91D镁合金车削加工工艺参数,获得更好的表面光洁度
研究了镁合金AZ91D车削加工时产生最小表面粗糙度和最大材料去除率的最佳切削参数。实验研究中考虑了切削速度(m/min)、进给量(mm/rev)和切削深度(mm)。为了寻找最佳切割参数,采用了田口法、响应面法、进化优化技术遗传算法(GA)和非支配排序遗传算法(NSGA-II)。与田口法相比,遗传算法的表面粗糙度降低了34.04%,MRR值提高了15.2%。在多目标优化NSGA-II中,切削速度为140.73m/min、进给速度为0.06mm/min、切削深度为0.99mm时,得到的表面粗糙度和MRR最优值分别为0.7341µm和9460 mm3 /min。多目标NSGA-II优化在Pareto Front模型上提供了多个非支配点,可以作为目标间选择的决策
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Innovations
Acta Innovations Environmental Science-Environmental Engineering
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信