Drought stress impact on the performance of deep convolutional neural networks for weed detection in Bahiagrass

IF 2.7 3区 农林科学 Q1 AGRONOMY
Jiayao Zhuang, Xiaojun Jin, Yong Chen, Wenting Meng, Yundi Wang, Jialin Yu, Bagavathiannan Muthukumar
{"title":"Drought stress impact on the performance of deep convolutional neural networks for weed detection in Bahiagrass","authors":"Jiayao Zhuang,&nbsp;Xiaojun Jin,&nbsp;Yong Chen,&nbsp;Wenting Meng,&nbsp;Yundi Wang,&nbsp;Jialin Yu,&nbsp;Bagavathiannan Muthukumar","doi":"10.1111/gfs.12583","DOIUrl":null,"url":null,"abstract":"<p>Machine vision-based weed detection relies on features such as plant colour, leaf texture, shape, and patterns. Drought stress in plants can alter leaf colour and morphological features, which may in turn affect the reliability of machine vision-based weed detection. The objective of this research was to evaluate the feasibility of using deep convolutional neural networks for the detection of Florida pusley (<i>Richardia scabra</i> L.) growing in drought stressed and unstressed bahiagrass (<i>Paspalum natatum</i> Flugge). The object detection neural networks you only look once (YOLO)v3, faster region-based convolutional network (Faster R-CNN), and variable filter net (VFNet) failed to effectively detect Florida pusley growing in drought stressed or unstressed bahiagrass, with F1 scores ≤0.54 in the testing dataset. Nevertheless, the use of the image classification neural networks AlexNet, GoogLeNet, and Visual Geometry Group-Network (VGGNet) was highly effective and achieved high (≥0.97) F1 scores and recall values (≥0.98) in detecting images containing Florida pusley growing in drought stressed or unstressed bahiagrass. Overall, these results demonstrated the effectiveness of using an image classification convolutional neural network for detecting Florida pusley in drought stressed or unstressed bahiagrass. These findings illustrate the broad applicability of these neural networks for weed detection.</p>","PeriodicalId":12767,"journal":{"name":"Grass and Forage Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass and Forage Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12583","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

Abstract

Machine vision-based weed detection relies on features such as plant colour, leaf texture, shape, and patterns. Drought stress in plants can alter leaf colour and morphological features, which may in turn affect the reliability of machine vision-based weed detection. The objective of this research was to evaluate the feasibility of using deep convolutional neural networks for the detection of Florida pusley (Richardia scabra L.) growing in drought stressed and unstressed bahiagrass (Paspalum natatum Flugge). The object detection neural networks you only look once (YOLO)v3, faster region-based convolutional network (Faster R-CNN), and variable filter net (VFNet) failed to effectively detect Florida pusley growing in drought stressed or unstressed bahiagrass, with F1 scores ≤0.54 in the testing dataset. Nevertheless, the use of the image classification neural networks AlexNet, GoogLeNet, and Visual Geometry Group-Network (VGGNet) was highly effective and achieved high (≥0.97) F1 scores and recall values (≥0.98) in detecting images containing Florida pusley growing in drought stressed or unstressed bahiagrass. Overall, these results demonstrated the effectiveness of using an image classification convolutional neural network for detecting Florida pusley in drought stressed or unstressed bahiagrass. These findings illustrate the broad applicability of these neural networks for weed detection.

干旱胁迫对百喜草杂草检测深度卷积神经网络性能的影响
基于机器视觉的杂草检测依赖于植物颜色、叶子纹理、形状和图案等特征。干旱胁迫会改变植物叶片的颜色和形态特征,进而影响机器视觉杂草检测的可靠性。本研究的目的是评价利用深度卷积神经网络检测生长在干旱胁迫和非干旱胁迫百叶草(Paspalum natatum Flugge)中的佛罗里达花楸(Richardia scabra L.)的可行性。只看一次的目标检测神经网络(YOLO)v3、更快的基于区域的卷积网络(faster R-CNN)和可变滤波网络(VFNet)未能有效检测出生长在干旱胁迫或无胁迫百海草中的佛罗里达pusley,测试数据集中的F1得分≤0.54。然而,使用图像分类神经网络AlexNet, GoogLeNet和Visual Geometry Group-Network (VGGNet)非常有效,在检测含有佛罗里达pusley生长在干旱胁迫或非干旱百海草中的图像时获得了高(≥0.97)F1分数和召回值(≥0.98)。总的来说,这些结果证明了使用图像分类卷积神经网络检测干旱胁迫或无胁迫百喜草中的佛罗里达pusley的有效性。这些发现说明了这些神经网络在杂草检测方面的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Grass and Forage Science
Grass and Forage Science 农林科学-农艺学
CiteScore
5.10
自引率
8.30%
发文量
37
审稿时长
12 months
期刊介绍: Grass and Forage Science is a major English language journal that publishes the results of research and development in all aspects of grass and forage production, management and utilization; reviews of the state of knowledge on relevant topics; and book reviews. Authors are also invited to submit papers on non-agricultural aspects of grassland management such as recreational and amenity use and the environmental implications of all grassland systems. The Journal considers papers from all climatic zones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信