3-D contact and pore network analysis of MICP cemented sands

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. Roy, J. D. Frost, D. Terzis
{"title":"3-D contact and pore network analysis of MICP cemented sands","authors":"N. Roy,&nbsp;J. D. Frost,&nbsp;D. Terzis","doi":"10.1007/s10035-023-01347-6","DOIUrl":null,"url":null,"abstract":"<div><p>The study describes a comprehensive methodology to evaluate X-Ray micro-computed tomography data from sand samples and to characterize their 3D microstructural properties. Fine and medium-grained sands are analyzed in their natural and bio-cemented states. While the two materials exhibit similar peak and residual strengths in their untreated state, they yield distinctly different strength improvements in their bio-cemented state, despite similar cementation contents. To understand the underlying mechanisms that govern this behavior, a recently developed approach is presented to gain new insights into the specimen’s micro-architecture. Results capture a series of properties such as the volume distribution of pore bodies, pore throats, particles, interparticle contacts, precipitation bonds, and distribution of tortuous paths. It is found that the intrinsic, i.e., pre-cementation microstructural properties, are crucial in determining the spatial distribution of post-cementation bonds. Furthermore, the volume of bonds at interparticle contacts and in throats governs the overall contact area, directly reflecting interparticle stress transmission. Contact area increases by 180% for the medium-grained sand compared to 120% for the fine-grained. Overall, the methodology introduced in this study forms a new basis for understanding biocementation and can contribute to a more robust formulation of simulation models incorporating pore and contact mechanics in porous media.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01347-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study describes a comprehensive methodology to evaluate X-Ray micro-computed tomography data from sand samples and to characterize their 3D microstructural properties. Fine and medium-grained sands are analyzed in their natural and bio-cemented states. While the two materials exhibit similar peak and residual strengths in their untreated state, they yield distinctly different strength improvements in their bio-cemented state, despite similar cementation contents. To understand the underlying mechanisms that govern this behavior, a recently developed approach is presented to gain new insights into the specimen’s micro-architecture. Results capture a series of properties such as the volume distribution of pore bodies, pore throats, particles, interparticle contacts, precipitation bonds, and distribution of tortuous paths. It is found that the intrinsic, i.e., pre-cementation microstructural properties, are crucial in determining the spatial distribution of post-cementation bonds. Furthermore, the volume of bonds at interparticle contacts and in throats governs the overall contact area, directly reflecting interparticle stress transmission. Contact area increases by 180% for the medium-grained sand compared to 120% for the fine-grained. Overall, the methodology introduced in this study forms a new basis for understanding biocementation and can contribute to a more robust formulation of simulation models incorporating pore and contact mechanics in porous media.

Graphic abstract

Abstract Image

MICP胶结砂三维接触及孔隙网络分析
该研究描述了一种综合的方法来评估砂样的x射线微计算机断层扫描数据,并表征其三维微观结构特性。细粒和中粒砂在自然和生物胶结状态下进行了分析。虽然这两种材料在未处理状态下表现出相似的峰值强度和残余强度,但在生物胶结状态下,它们的强度提高明显不同,尽管胶结含量相似。为了理解控制这种行为的潜在机制,最近提出了一种方法来获得对样品微观结构的新见解。结果捕获了一系列性质,如孔体的体积分布、孔喉、颗粒、颗粒间接触、沉淀键和弯曲路径的分布。研究发现,胶结前微观结构性质是决定胶结后键空间分布的关键因素。此外,颗粒间接触和喉部的键体积决定了整个接触面积,直接反映了颗粒间的应力传递。中粒砂的接触面积增加了180%,细粒砂的接触面积增加了120%。总的来说,本研究中引入的方法为理解生物胶结形成了新的基础,并有助于建立更可靠的模拟模型,将多孔介质中的孔隙和接触力学结合起来。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信