Prediction of ultimate tensile strength of friction stir welding joint using deep learning-based-multilayer perceptron and long short term memory networks

Q4 Materials Science
Ujjaval Modi, Shuja Ahmed, Akhand Rai
{"title":"Prediction of ultimate tensile strength of friction stir welding joint using deep learning-based-multilayer perceptron and long short term memory networks","authors":"Ujjaval Modi, Shuja Ahmed, Akhand Rai","doi":"10.1080/09507116.2023.2236936","DOIUrl":null,"url":null,"abstract":"Abstract Friction stir welding (FSW) is a solid-state joining technique where the joint strength is mainly influenced by three process parameters, namely, spindle speed (N), welding speed (V), and plunge force (Fz). The modelling of complex relationships between the process parameters and joint strength requires many experiments, which is a challenging, time-consuming, and non-economical affair. To tackle this problem, computational mathematical models such as deep learning (DL) can be employed to predict the joint strength reliably. In this paper, DL techniques, namely, deep multilayer perceptron (DMLP) and long short-term memory (LSTM) networks have been proposed for such a purpose. The DL networks were first trained with the FSW experimental data and then, the pre-trained models were used for predicting the weld strength. It was found that the DMLP and LSTM models provided lower prediction errors, which are RMSE of 3.30 and 7.63, respectively, and can be effectively utilized for determining weld quality. The proposed DL-based techniques were further compared with the traditional models – the shallow artificial neural network (SANN) model having an RMSE of 27.11 and the ANFIS model having an RMSE of 5.31. DMLP was found to be superior in determining the weld strength most accurately.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"37 1","pages":"387 - 399"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2236936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Friction stir welding (FSW) is a solid-state joining technique where the joint strength is mainly influenced by three process parameters, namely, spindle speed (N), welding speed (V), and plunge force (Fz). The modelling of complex relationships between the process parameters and joint strength requires many experiments, which is a challenging, time-consuming, and non-economical affair. To tackle this problem, computational mathematical models such as deep learning (DL) can be employed to predict the joint strength reliably. In this paper, DL techniques, namely, deep multilayer perceptron (DMLP) and long short-term memory (LSTM) networks have been proposed for such a purpose. The DL networks were first trained with the FSW experimental data and then, the pre-trained models were used for predicting the weld strength. It was found that the DMLP and LSTM models provided lower prediction errors, which are RMSE of 3.30 and 7.63, respectively, and can be effectively utilized for determining weld quality. The proposed DL-based techniques were further compared with the traditional models – the shallow artificial neural network (SANN) model having an RMSE of 27.11 and the ANFIS model having an RMSE of 5.31. DMLP was found to be superior in determining the weld strength most accurately.
基于深度学习多层感知器和长短期记忆网络的搅拌摩擦焊接接头极限抗拉强度预测
摘要搅拌摩擦焊是一种固态连接技术,接头强度主要受主轴转速(N)、焊接速度(V)和插入力(Fz)三个工艺参数的影响。工艺参数与接头强度之间复杂关系的建模需要大量的实验,这是一项具有挑战性、耗时且不经济的工作。为了解决这一问题,可以采用深度学习(DL)等计算数学模型来可靠地预测接头强度。为此,本文提出了深度学习技术,即深度多层感知器(DMLP)和长短期记忆(LSTM)网络。首先使用FSW实验数据对DL网络进行训练,然后使用预训练模型预测焊缝强度。结果表明,DMLP和LSTM模型的预测误差较小,RMSE分别为3.30和7.63,可以有效地用于焊缝质量的确定。并将本文提出的基于dl的技术与传统模型(RMSE为27.11的浅层人工神经网络(SANN)模型和RMSE为5.31的ANFIS模型)进行了进一步的比较。发现DMLP在最准确地确定焊缝强度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding International
Welding International Materials Science-Metals and Alloys
CiteScore
0.70
自引率
0.00%
发文量
57
期刊介绍: Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信