D. Yu. Vlasov, A. L. Bryukhanov, G. G. Nyanikova, M. S. Zelenskaya, I. M. Tsarovtseva, A. R. Izatulina
{"title":"The Corrosive Activity of Microorganisms Isolated from Fouling of Structural Materials in the Coastal Zone of the Barents Sea","authors":"D. Yu. Vlasov, A. L. Bryukhanov, G. G. Nyanikova, M. S. Zelenskaya, I. M. Tsarovtseva, A. R. Izatulina","doi":"10.1134/S0003683823040166","DOIUrl":null,"url":null,"abstract":"<div><p>Potentially corrosion-active microorganisms isolated from structural materials with the signs of biofouling on the coast of Kislaya Bay (Barents Sea, Russia) were studied: sulfate-reducing, iron-oxidizing and sulfur-oxidizing bacteria. The cultures of sulfate-reducing bacteria (<i>Desulfovibrio</i> sp., <i>Halodesulfovibrio</i> sp.), sulfur-oxidizing bacteria (<i>Dietzia</i> sp.), and iron-oxidizing bacteria (<i>Pseudomonas fluorescens</i>, <i>Bacillus</i> sp.) were identified on the basis of determining the nucleotide sequences of the 16S rRNA gene. The methods of scanning electron microscopy, energy dispersive microanalysis of the chemical composition, and powder X-ray diffraction analysis revealed significant changes in the structure and chemical composition of the surface layer of steel reinforcement samples exposed for 28 days in the presence of isolated microorganisms that demonstrated their active participation in corrosion processes. It has been shown that the formation of mineral analogues in corrosion products depends on the strains of studied bacteria and the peculiarities of their metabolism. Sulfate-reducing bacteria isolated from the littoral zone of the Barents Sea showed the highest activity in the development of corrosion processes.</p></div>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"59 4","pages":"425 - 437"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683823040166","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Potentially corrosion-active microorganisms isolated from structural materials with the signs of biofouling on the coast of Kislaya Bay (Barents Sea, Russia) were studied: sulfate-reducing, iron-oxidizing and sulfur-oxidizing bacteria. The cultures of sulfate-reducing bacteria (Desulfovibrio sp., Halodesulfovibrio sp.), sulfur-oxidizing bacteria (Dietzia sp.), and iron-oxidizing bacteria (Pseudomonas fluorescens, Bacillus sp.) were identified on the basis of determining the nucleotide sequences of the 16S rRNA gene. The methods of scanning electron microscopy, energy dispersive microanalysis of the chemical composition, and powder X-ray diffraction analysis revealed significant changes in the structure and chemical composition of the surface layer of steel reinforcement samples exposed for 28 days in the presence of isolated microorganisms that demonstrated their active participation in corrosion processes. It has been shown that the formation of mineral analogues in corrosion products depends on the strains of studied bacteria and the peculiarities of their metabolism. Sulfate-reducing bacteria isolated from the littoral zone of the Barents Sea showed the highest activity in the development of corrosion processes.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.