Transition of emotions from the negatively excited state to positive unexcited state: an ERP perspective

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
M. Singh, Mandeep Singh
{"title":"Transition of emotions from the negatively excited state to positive unexcited state: an ERP perspective","authors":"M. Singh, Mandeep Singh","doi":"10.24425/mms.2022.140030","DOIUrl":null,"url":null,"abstract":"The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcitedstate,alsoknownastheHighValenceLowArousal(HVLA)stateoftheemotion.Thepsychologists endeavourtobringthesubjectsfromanegativelyexcitedstateofemotion(LowValenceHighArousalstate) toapositiveunexcitedstateofemotion(HighValenceLowArousalstate).Inthefirstpartofthisstudy, afour-classsubjectindependentemotionclassifierwasdevelopedwithanSVMpolynomialclassifier usingaverageEventRelatedPotential(ERP)anddifferentialaverageERPattributes.Thevisuallyevoked Electroencephalogram(EEG)signalswereacquiredfrom24subjects.Thefour-classclassificationaccuracy was83%usingaverageERPattributesand77%usingdifferentialaverageERPattributes.Inthesecond partofthestudy,themeditativeinterventionwasappliedto20subjectswhodeclaredthemselvesnegatively excited(inLowValenceHighArousalstateofemotion).TheEEGsignalswereacquiredbeforeandafter themeditativeintervention.Thefour-classsubjectindependentemotionclassifierdevelopedinStudy1 correctlyclassifiedthese20subjectstobeinanegativelyexcitedstateofemotion.Aftertheintervention,16 subjectsself-assessedthemselvestobeinapositiveunexcited(HVLA)stateofemotion(whichshowsthe interventionaccuracyof80%).Testingafour-classsubjectindependentemotionclassifierontheEEGdata acquiredafterthemeditativeinterventionvalidated13of16subjectsinapositiveunexcitedstate,yielding anaccuracyof81.3%.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2022.140030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcitedstate,alsoknownastheHighValenceLowArousal(HVLA)stateoftheemotion.Thepsychologists endeavourtobringthesubjectsfromanegativelyexcitedstateofemotion(LowValenceHighArousalstate) toapositiveunexcitedstateofemotion(HighValenceLowArousalstate).Inthefirstpartofthisstudy, afour-classsubjectindependentemotionclassifierwasdevelopedwithanSVMpolynomialclassifier usingaverageEventRelatedPotential(ERP)anddifferentialaverageERPattributes.Thevisuallyevoked Electroencephalogram(EEG)signalswereacquiredfrom24subjects.Thefour-classclassificationaccuracy was83%usingaverageERPattributesand77%usingdifferentialaverageERPattributes.Inthesecond partofthestudy,themeditativeinterventionwasappliedto20subjectswhodeclaredthemselvesnegatively excited(inLowValenceHighArousalstateofemotion).TheEEGsignalswereacquiredbeforeandafter themeditativeintervention.Thefour-classsubjectindependentemotionclassifierdevelopedinStudy1 correctlyclassifiedthese20subjectstobeinanegativelyexcitedstateofemotion.Aftertheintervention,16 subjectsself-assessedthemselvestobeinapositiveunexcited(HVLA)stateofemotion(whichshowsthe interventionaccuracyof80%).Testingafour-classsubjectindependentemotionclassifierontheEEGdata acquiredafterthemeditativeinterventionvalidated13of16subjectsinapositiveunexcitedstate,yielding anaccuracyof81.3%.
情绪从消极兴奋状态到积极未兴奋状态的转变:ERP视角
认知方面,如感知、解决问题、思考、任务执行等,都受到情绪的极大影响,因此有必要研究情绪。情绪的最佳状态是积极的未激发状态,也被称为高价低兴奋(HVLA)运动状态。心理学家们努力将受试者的消极情绪从兴奋的运动状态(低价高兴奋状态)转变为积极的未激励运动状态(高价低激动状态)。在本研究的第一部分,SVM多项式类使用平均事件相关电位(ERP)和不同的平均ERPatt值开发了四个与类别受试者无关的运动类别。从24名受试者中获得了可视化脑电图(EEG)信号。使用平均ERPat值时,四个类别的定位准确率为83%,使用不同的平均er值时,准确率为77%。在第二部分研究中,将编辑性干预应用于20名受试者,这些受试者被认为是负兴奋的(在运动的低价高Arousalstate中)。在编辑性干预前后重新获得EEG信号。研究中开发的四类独立于受试者的运动类别1正确的类别使这20名受试者处于负运动状态。干预后,16名受试者被评估为处于积极的未激发(HVLA)运动状态(干预准确率为80%)。在编辑干预后获得的EEG数据中,对四类受试者独立运动状态进行了验证,16名被试中有13名处于积极的非激发状态,产生了81.3%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metrology and Measurement Systems
Metrology and Measurement Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
10.00%
发文量
0
审稿时长
6 months
期刊介绍: Contributions are invited on all aspects of the research, development and applications of the measurement science and technology. The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments. The average publication cycle is 6 months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信