The Asymptotic Statistics of Random Covering Surfaces

IF 2.8 1区 数学 Q1 MATHEMATICS
Michael Magee, Doron Puder
{"title":"The Asymptotic Statistics of Random Covering Surfaces","authors":"Michael Magee, Doron Puder","doi":"10.1017/fmp.2023.13","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\Gamma _{g}$\n be the fundamental group of a closed connected orientable surface of genus \n$g\\geq 2$\n . We develop a new method for integrating over the representation space \n$\\mathbb {X}_{g,n}=\\mathrm {Hom}(\\Gamma _{g},S_{n})$\n , where \n$S_{n}$\n is the symmetric group of permutations of \n$\\{1,\\ldots ,n\\}$\n . Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. Given \n$\\phi \\in \\mathbb {X}_{g,n}$\n and \n$\\gamma \\in \\Gamma _{g}$\n , we let \n$\\mathsf {fix}_{\\gamma }(\\phi )$\n be the number of fixed points of the permutation \n$\\phi (\\gamma )$\n . The function \n$\\mathsf {fix}_{\\gamma }$\n is a special case of a natural family of functions on \n$\\mathbb {X}_{g,n}$\n called Wilson loops. Our new methodology leads to an asymptotic formula, as \n$n\\to \\infty $\n , for the expectation of \n$\\mathsf {fix}_{\\gamma }$\n with respect to the uniform probability measure on \n$\\mathbb {X}_{g,n}$\n , which is denoted by \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]$\n . We prove that if \n$\\gamma \\in \\Gamma _{g}$\n is not the identity and q is maximal such that \n$\\gamma $\n is a q th power in \n$\\Gamma _{g}$\n , then \n$$\\begin{align*}\\mathbb{E}_{g,n}\\left[\\mathsf{fix}_{\\gamma}\\right]=d(q)+O(n^{-1}) \\end{align*}$$\n as \n$n\\to \\infty $\n , where \n$d\\left (q\\right )$\n is the number of divisors of q. Even the weaker corollary that \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]=o(n)$\n as \n$n\\to \\infty $\n is a new result of this paper. We also prove that \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]$\n can be approximated to any order \n$O(n^{-M})$\n by a polynomial in \n$n^{-1}$\n .","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.13","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$ . We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$ , where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$ . Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. Given $\phi \in \mathbb {X}_{g,n}$ and $\gamma \in \Gamma _{g}$ , we let $\mathsf {fix}_{\gamma }(\phi )$ be the number of fixed points of the permutation $\phi (\gamma )$ . The function $\mathsf {fix}_{\gamma }$ is a special case of a natural family of functions on $\mathbb {X}_{g,n}$ called Wilson loops. Our new methodology leads to an asymptotic formula, as $n\to \infty $ , for the expectation of $\mathsf {fix}_{\gamma }$ with respect to the uniform probability measure on $\mathbb {X}_{g,n}$ , which is denoted by $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ . We prove that if $\gamma \in \Gamma _{g}$ is not the identity and q is maximal such that $\gamma $ is a q th power in $\Gamma _{g}$ , then $$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1}) \end{align*}$$ as $n\to \infty $ , where $d\left (q\right )$ is the number of divisors of q. Even the weaker corollary that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$ as $n\to \infty $ is a new result of this paper. We also prove that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ can be approximated to any order $O(n^{-M})$ by a polynomial in $n^{-1}$ .
随机覆盖曲面的渐近统计量
摘要设$\Gamma_{g}$是亏格$g\geq2$的闭连通可定向曲面的基群。我们开发了一种在表示空间$\mathbb上积分的新方法{X}_{g,n}=\mathrm{Hom}(\Gamma_{g},S_{n})$,其中$S_{n}$是$\{1,\ldots,n \}$的对称排列群。等价地,这是亏格g的闭曲面的所有顶点标记的n片覆盖空间的空间。给定$\phi\in\mathbb{X}_{g,n}$和$\gamma\in\gamma_{g}$,我们让$\mathsf{fix}_{\gamma}(\phi)$是置换$\phi(\gamma)$的不动点的数目。函数$\mathsf{fix}_{\gamma}$是$\mathbb上一个自然函数族的特例{X}_{g,n}$称为Wilson循环。我们的新方法得到了一个渐近公式,如$n\to\infty$,用于$\mathsf的期望{fix}_{\gamma}$关于$\mathbb上的一致概率测度{X}_{g,n}$,用$\mathbb表示{E}_{g,n}[\mathsf{fix}_{\gamma}]$。我们证明了如果$\gamma\in\gamma_{g}$不是恒等式,并且q是最大的,使得$\gamma$是$\gamma_{g}$中的q次方,那么$$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1})\end{align*}$$为$n\to\infty$,其中$d\left(q\right)$是q的除数{E}_{g,n}[\mathsf{fix}_{\gamma}]=o(n)$as$n\to\infty$是本文的一个新结果。我们还证明了$\mathbb{E}_{g,n}[\mathsf{fix}_{\gamma}]$可以通过$n^{-1}$中的多项式近似为任何阶$O(n^{-M})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信