The Asymptotic Statistics of Random Covering Surfaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Magee, Doron Puder
{"title":"The Asymptotic Statistics of Random Covering Surfaces","authors":"Michael Magee, Doron Puder","doi":"10.1017/fmp.2023.13","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\Gamma _{g}$\n be the fundamental group of a closed connected orientable surface of genus \n$g\\geq 2$\n . We develop a new method for integrating over the representation space \n$\\mathbb {X}_{g,n}=\\mathrm {Hom}(\\Gamma _{g},S_{n})$\n , where \n$S_{n}$\n is the symmetric group of permutations of \n$\\{1,\\ldots ,n\\}$\n . Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. Given \n$\\phi \\in \\mathbb {X}_{g,n}$\n and \n$\\gamma \\in \\Gamma _{g}$\n , we let \n$\\mathsf {fix}_{\\gamma }(\\phi )$\n be the number of fixed points of the permutation \n$\\phi (\\gamma )$\n . The function \n$\\mathsf {fix}_{\\gamma }$\n is a special case of a natural family of functions on \n$\\mathbb {X}_{g,n}$\n called Wilson loops. Our new methodology leads to an asymptotic formula, as \n$n\\to \\infty $\n , for the expectation of \n$\\mathsf {fix}_{\\gamma }$\n with respect to the uniform probability measure on \n$\\mathbb {X}_{g,n}$\n , which is denoted by \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]$\n . We prove that if \n$\\gamma \\in \\Gamma _{g}$\n is not the identity and q is maximal such that \n$\\gamma $\n is a q th power in \n$\\Gamma _{g}$\n , then \n$$\\begin{align*}\\mathbb{E}_{g,n}\\left[\\mathsf{fix}_{\\gamma}\\right]=d(q)+O(n^{-1}) \\end{align*}$$\n as \n$n\\to \\infty $\n , where \n$d\\left (q\\right )$\n is the number of divisors of q. Even the weaker corollary that \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]=o(n)$\n as \n$n\\to \\infty $\n is a new result of this paper. We also prove that \n$\\mathbb {E}_{g,n}[\\mathsf {fix}_{\\gamma }]$\n can be approximated to any order \n$O(n^{-M})$\n by a polynomial in \n$n^{-1}$\n .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$ . We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$ , where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$ . Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. Given $\phi \in \mathbb {X}_{g,n}$ and $\gamma \in \Gamma _{g}$ , we let $\mathsf {fix}_{\gamma }(\phi )$ be the number of fixed points of the permutation $\phi (\gamma )$ . The function $\mathsf {fix}_{\gamma }$ is a special case of a natural family of functions on $\mathbb {X}_{g,n}$ called Wilson loops. Our new methodology leads to an asymptotic formula, as $n\to \infty $ , for the expectation of $\mathsf {fix}_{\gamma }$ with respect to the uniform probability measure on $\mathbb {X}_{g,n}$ , which is denoted by $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ . We prove that if $\gamma \in \Gamma _{g}$ is not the identity and q is maximal such that $\gamma $ is a q th power in $\Gamma _{g}$ , then $$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1}) \end{align*}$$ as $n\to \infty $ , where $d\left (q\right )$ is the number of divisors of q. Even the weaker corollary that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$ as $n\to \infty $ is a new result of this paper. We also prove that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ can be approximated to any order $O(n^{-M})$ by a polynomial in $n^{-1}$ .
随机覆盖曲面的渐近统计量
摘要设$\Gamma_{g}$是亏格$g\geq2$的闭连通可定向曲面的基群。我们开发了一种在表示空间$\mathbb上积分的新方法{X}_{g,n}=\mathrm{Hom}(\Gamma_{g},S_{n})$,其中$S_{n}$是$\{1,\ldots,n \}$的对称排列群。等价地,这是亏格g的闭曲面的所有顶点标记的n片覆盖空间的空间。给定$\phi\in\mathbb{X}_{g,n}$和$\gamma\in\gamma_{g}$,我们让$\mathsf{fix}_{\gamma}(\phi)$是置换$\phi(\gamma)$的不动点的数目。函数$\mathsf{fix}_{\gamma}$是$\mathbb上一个自然函数族的特例{X}_{g,n}$称为Wilson循环。我们的新方法得到了一个渐近公式,如$n\to\infty$,用于$\mathsf的期望{fix}_{\gamma}$关于$\mathbb上的一致概率测度{X}_{g,n}$,用$\mathbb表示{E}_{g,n}[\mathsf{fix}_{\gamma}]$。我们证明了如果$\gamma\in\gamma_{g}$不是恒等式,并且q是最大的,使得$\gamma$是$\gamma_{g}$中的q次方,那么$$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1})\end{align*}$$为$n\to\infty$,其中$d\left(q\right)$是q的除数{E}_{g,n}[\mathsf{fix}_{\gamma}]=o(n)$as$n\to\infty$是本文的一个新结果。我们还证明了$\mathbb{E}_{g,n}[\mathsf{fix}_{\gamma}]$可以通过$n^{-1}$中的多项式近似为任何阶$O(n^{-M})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信