Dr. A. Anne Frank Joe, A. Veeramuthu, Dr. K. Ashokkumar
{"title":"A NOVEL APPROACH TO COMBINE NIR AND IMAGE FEATURES FOR NON-DESTRUCTIVE ASSAY OF INDIAN WHEAT VARIETIES","authors":"Dr. A. Anne Frank Joe, A. Veeramuthu, Dr. K. Ashokkumar","doi":"10.22452/mjcs.sp2022no1.6","DOIUrl":null,"url":null,"abstract":"Near InfraRed Spectroscopy (NIRS) based techniques have evolved tremendously and are being perfected over ages to be applied in a wide variety of applications. This study focuses on the selection of optimum classification algorithms, as an automated variety identifier suitable for wheat grains based on the statistical performance indices for the quality analysis and variety classification of wheat grains. NIRS was used to non-destructively determine protein, carbohydrate, ash and moisture content of wheat grains. Structural analysis focuses on the visualization aspect of the wheat grains such as the shape, size (learnt from the length, width, and height), colour and glossiness of the seed coat. In addition to the spectral information, the image derived characteristics are incorporated into the classification models to further enhance the variety identification of 10 varieties of whole wheat samples UP 262, Samba, RR 21, 343, Super sitwa, Punjab, Ankurkedar, Super 303, Pusa 360, PBW 502. Varietal purity of wheat grains is a significant factor to be considered before the milling process. The results clearly reveal that the proposed selective wavelength-based prediction algorithms and selection of limited individual quality parameters, using improved methods to extract these features has aided with the success of classification performed in this work. The proposed novel approach proves that collaborating the selected spectral features and image features further enhances the effectiveness of this work.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2022no1.6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Near InfraRed Spectroscopy (NIRS) based techniques have evolved tremendously and are being perfected over ages to be applied in a wide variety of applications. This study focuses on the selection of optimum classification algorithms, as an automated variety identifier suitable for wheat grains based on the statistical performance indices for the quality analysis and variety classification of wheat grains. NIRS was used to non-destructively determine protein, carbohydrate, ash and moisture content of wheat grains. Structural analysis focuses on the visualization aspect of the wheat grains such as the shape, size (learnt from the length, width, and height), colour and glossiness of the seed coat. In addition to the spectral information, the image derived characteristics are incorporated into the classification models to further enhance the variety identification of 10 varieties of whole wheat samples UP 262, Samba, RR 21, 343, Super sitwa, Punjab, Ankurkedar, Super 303, Pusa 360, PBW 502. Varietal purity of wheat grains is a significant factor to be considered before the milling process. The results clearly reveal that the proposed selective wavelength-based prediction algorithms and selection of limited individual quality parameters, using improved methods to extract these features has aided with the success of classification performed in this work. The proposed novel approach proves that collaborating the selected spectral features and image features further enhances the effectiveness of this work.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus