Structure and vibration spectra of strontium and magnesium oxalates at high pressure

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
I. Batyrev, P. Cifligu, K. A. Pineda, S. Coleman, M. Pravica
{"title":"Structure and vibration spectra of strontium and magnesium oxalates at high pressure","authors":"I. Batyrev, P. Cifligu, K. A. Pineda, S. Coleman, M. Pravica","doi":"10.1080/08957959.2021.1891229","DOIUrl":null,"url":null,"abstract":"ABSTRACT We report theoretical and experimental investigations on the structures of strontium and magnesium oxalates, and corresponding Raman spectra at high pressure. These systems have shown progress in the generation of CO2 and in the synthesis of energetic doped polymeric carbon monoxide after X-ray irradiation and simultaneous application of high pressure. Density functional perturbation theory (DFT) was used to calculate the zone center optical phonons in monoclinic and triclinic strontium oxalate, and the ambient triclinic phase of magnesium oxalate. Vibration modes were also determined in terms of atomic displacements for both compounds. The simulations were compared to experimental Raman spectra in an effort to elucidate the details of the phase transition between monoclinic and triclinic phases. Additional phonon dispersion calculations of the compounds were performed to gain better insight into the dynamic phase stability in strontium and magnesium oxalates under high pressure.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2021.1891229","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1891229","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We report theoretical and experimental investigations on the structures of strontium and magnesium oxalates, and corresponding Raman spectra at high pressure. These systems have shown progress in the generation of CO2 and in the synthesis of energetic doped polymeric carbon monoxide after X-ray irradiation and simultaneous application of high pressure. Density functional perturbation theory (DFT) was used to calculate the zone center optical phonons in monoclinic and triclinic strontium oxalate, and the ambient triclinic phase of magnesium oxalate. Vibration modes were also determined in terms of atomic displacements for both compounds. The simulations were compared to experimental Raman spectra in an effort to elucidate the details of the phase transition between monoclinic and triclinic phases. Additional phonon dispersion calculations of the compounds were performed to gain better insight into the dynamic phase stability in strontium and magnesium oxalates under high pressure.
草酸锶和镁在高压下的结构和振动光谱
摘要我们报道了草酸锶和草酸镁结构的理论和实验研究,以及相应的高压拉曼光谱。这些系统在X射线照射和同时施加高压后,在CO2的产生和高能掺杂的聚合物一氧化碳的合成方面显示出进展。利用密度泛函微扰理论(DFT)计算了单斜和三斜草酸锶中的带心光学声子,以及草酸镁的环境三斜相。还根据两种化合物的原子位移确定了振动模式。将模拟结果与实验拉曼光谱进行比较,以阐明单斜相和三斜相之间相变的细节。对化合物进行了额外的声子色散计算,以更好地了解草酸锶和镁在高压下的动态相稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信