{"title":"Automatic mapping of gully from satellite images using asymmetric non-local LinkNet: A case study in Northeast China","authors":"Panpan Zhu , Hao Xu , Ligang Zhou , Peixin Yu , Liqiang Zhang , Suhong Liu","doi":"10.1016/j.iswcr.2023.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Gully erosion can lead to the destruction of farmland and the reduction in crop yield. Gully mapping from remote sensing images is critical for quickly obtaining the distribution of gullies at regional scales and arranging corresponding prevention and control measures. The narrow and irregular shapes and similar colors to the surrounding farmland make mapping erosion gullies in sloping farmland from remote sensing images challenging. To implement gully erosion mapping, we developed a small training samples-oriented lightweight deep leaning model, called asymmetric non-local LinkNet (ASNL-LinkNet). The ASNL-LinkNet integrates global context information through an asymmetric non-local operation and conducts multilayer feature fusion to improve the robustness of the extracted features. Experiment results show that the proposed ASNL-LinkNet achieves the best performance when compared with other deep learning methods. The quantitative evaluation results in the three test areas show that the F1-score of erosion gully recognition varies from 0.62 to 0.72. This study provides theoretical reference and practical guidance for monitoring erosion gullies on slope farmland in the black soil region of Northeast China.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 2","pages":"Pages 365-378"},"PeriodicalIF":7.3000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000606/pdfft?md5=f3bdedb0af3acd3e607ac84b470635df&pid=1-s2.0-S2095633923000606-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000606","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gully erosion can lead to the destruction of farmland and the reduction in crop yield. Gully mapping from remote sensing images is critical for quickly obtaining the distribution of gullies at regional scales and arranging corresponding prevention and control measures. The narrow and irregular shapes and similar colors to the surrounding farmland make mapping erosion gullies in sloping farmland from remote sensing images challenging. To implement gully erosion mapping, we developed a small training samples-oriented lightweight deep leaning model, called asymmetric non-local LinkNet (ASNL-LinkNet). The ASNL-LinkNet integrates global context information through an asymmetric non-local operation and conducts multilayer feature fusion to improve the robustness of the extracted features. Experiment results show that the proposed ASNL-LinkNet achieves the best performance when compared with other deep learning methods. The quantitative evaluation results in the three test areas show that the F1-score of erosion gully recognition varies from 0.62 to 0.72. This study provides theoretical reference and practical guidance for monitoring erosion gullies on slope farmland in the black soil region of Northeast China.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research