Hydrostaticity in high pressure experiments: some general observations and guidelines for high pressure experimenters

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
K. Takemura
{"title":"Hydrostaticity in high pressure experiments: some general observations and guidelines for high pressure experimenters","authors":"K. Takemura","doi":"10.1080/08957959.2021.1903457","DOIUrl":null,"url":null,"abstract":"ABSTRACT The characteristics of hydrostatic stress conditions are discussed and compared with real experimental observations made under high pressure with a diamond-anvil cell. While fluid pressure-transmitting media give a well-defined single stress condition, solid pressure-transmitting media give a variety of stress conditions within the limit of their shear strength under high pressure. Owing to its low shear strength, solid helium would be the best choice for a pressure-transmitting medium to at least 100 GPa. However, helium is so compressible that care should be taken on minimizing irregular deformation of a gasket hole, which often causes complicated stress states. A review is given on the quasi-hydrostatic limits of solidified pressure-transmitting media, and some ways to reduce nonhydrostaticity are discussed including the case of low-temperature experiments.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"155 - 174"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2021.1903457","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1903457","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

ABSTRACT The characteristics of hydrostatic stress conditions are discussed and compared with real experimental observations made under high pressure with a diamond-anvil cell. While fluid pressure-transmitting media give a well-defined single stress condition, solid pressure-transmitting media give a variety of stress conditions within the limit of their shear strength under high pressure. Owing to its low shear strength, solid helium would be the best choice for a pressure-transmitting medium to at least 100 GPa. However, helium is so compressible that care should be taken on minimizing irregular deformation of a gasket hole, which often causes complicated stress states. A review is given on the quasi-hydrostatic limits of solidified pressure-transmitting media, and some ways to reduce nonhydrostaticity are discussed including the case of low-temperature experiments.
高压实验中的静力学:高压实验人员的一般观察和指南
讨论了静流体应力条件的特点,并与金刚石砧池高压下的实际实验结果进行了比较。流体传压介质具有明确的单一应力条件,而固体传压介质在高压作用下在其抗剪强度极限内具有多种应力条件。由于其较低的抗剪强度,在100 GPa以上的压力传递介质中,固体氦是最佳选择。然而,氦气是可压缩的,因此应注意尽量减少垫圈孔的不规则变形,这通常会导致复杂的应力状态。综述了固体传压介质的准静力极限,讨论了降低非静力性的方法,包括低温实验的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信