Quantum chemical calculations of phenazine-based organic dyes in dye-sensitized solar cells

IF 1.3 3区 化学 Q3 CHEMISTRY, ORGANIC
Nesim Yigit, Zeynep Şilan Turhan
{"title":"Quantum chemical calculations of phenazine-based organic dyes in dye-sensitized solar cells","authors":"Nesim Yigit, Zeynep Şilan Turhan","doi":"10.1515/hc-2020-0133","DOIUrl":null,"url":null,"abstract":"Abstract In this study, quantum chemical calculations of phenazine-based organic molecules applied in organic dye-sensitized solar cells (DSSCs) have been made and interpreted. Since DSSC molecules work with the electron push–pull system, the sequence of other compounds (2–8) from compound 1 is designed as a donor–π bridge (weak acceptor)–acceptor (D–π–A). Later, the studied molecules were expanded from 2a to 8c by lengthening the conjugation with phenyl, thiophene, and furan to the acceptor parts. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are practiced to investigate all structures and absorption spectra of molecules, respectively. It has been observed that the phenazine-based molecule series are good candidates for DSSCs, both with their band gap and their absorption spectrum results. It can be assumed that changing the HOMO and LUMO energy values of all designed structures according to compound 1 can absorb light in the organic dye-sensitized solar cells and transfer electrons to the conductivity band of TiO2. As a result, it has been resolved that various dyes can be designed for dye-sensitizing solar cells by calculating electronic energies, HOMO–LUMO energies, and absorption wavelengths.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"155 - 163"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0133","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this study, quantum chemical calculations of phenazine-based organic molecules applied in organic dye-sensitized solar cells (DSSCs) have been made and interpreted. Since DSSC molecules work with the electron push–pull system, the sequence of other compounds (2–8) from compound 1 is designed as a donor–π bridge (weak acceptor)–acceptor (D–π–A). Later, the studied molecules were expanded from 2a to 8c by lengthening the conjugation with phenyl, thiophene, and furan to the acceptor parts. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are practiced to investigate all structures and absorption spectra of molecules, respectively. It has been observed that the phenazine-based molecule series are good candidates for DSSCs, both with their band gap and their absorption spectrum results. It can be assumed that changing the HOMO and LUMO energy values of all designed structures according to compound 1 can absorb light in the organic dye-sensitized solar cells and transfer electrons to the conductivity band of TiO2. As a result, it has been resolved that various dyes can be designed for dye-sensitizing solar cells by calculating electronic energies, HOMO–LUMO energies, and absorption wavelengths.
染料敏化太阳能电池中苯那嗪基有机染料的量子化学计算
摘要在本研究中,对应用于有机染料敏化太阳能电池(DSSC)的吩嗪基有机分子进行了量子化学计算并进行了解释。由于DSSC分子与电子推拉系统一起工作,化合物1中其他化合物(2–8)的序列被设计为供体-π桥(弱受体)-受体(D–π–a)。后来,通过延长与苯基、噻吩和呋喃到受体部分的结合,将所研究的分子从2a扩展到8c。分别采用密度泛函理论(DFT)和含时密度泛函理论计算来研究分子的所有结构和吸收光谱。已经观察到,基于吩嗪的分子系列是DSSC的良好候选者,无论是其带隙还是其吸收光谱结果。可以假设,改变根据化合物1设计的所有结构的HOMO和LUMO能量值可以吸收有机染料敏化太阳能电池中的光并将电子转移到TiO2的导电带。因此,通过计算电子能、HOMO–LUMO能和吸收波长,可以为染料敏化太阳能电池设计各种染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heterocyclic Communications
Heterocyclic Communications 化学-有机化学
CiteScore
3.80
自引率
4.30%
发文量
13
审稿时长
1.4 months
期刊介绍: Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信