Three-Dimensional Printing of Ultrasoft Silicone with a Functional Stiffness Gradient.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0218
Clayton A Young, MeiLi O'Bannon, Scott L Thomson
{"title":"Three-Dimensional Printing of Ultrasoft Silicone with a Functional Stiffness Gradient.","authors":"Clayton A Young, MeiLi O'Bannon, Scott L Thomson","doi":"10.1089/3dp.2022.0218","DOIUrl":null,"url":null,"abstract":"<p><p>A methodology for three-dimensionally printing ultrasoft silicone with a functional stiffness gradient is presented. Ultraviolet-cure silicone was deposited via two independently controlled extruders into a thixotropic, gel-like, silicone oil-based support matrix. Each extruder contained a different liquid silicone formulation. The extrusion rates were independently varied during printing such that the combined selectively deposited material contained different ratios of the two silicones, resulting in localized control of material stiffness. Tests to validate the process are reported, including tensile testing of homogeneous cubic specimens to quantify the range of material stiffness that could be printed, indentation testing of cuboid specimens to characterize printed stiffness gradients, and vibratory testing of synthetic multilayer vocal fold (VF) models to demonstrate that the method may be applied to the fabrication of biomechanical models for voice production research. The cubic specimens exhibited linear stress-strain data with tensile elasticity modulus values between 1.11 and 27.1 kPa, more than a factor of 20 in stiffness variation. The cuboid specimens exhibited material variations that were visually recognizable and quantifiable via indentation testing. The VF models withstood rigorous phonatory flow-induced vibration and exhibited vibratory characteristics comparable to those of previous models. Overall, while process refinements are needed, the results of these tests demonstrate the ability to print ultrasoft silicone with stiffness gradients.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0218","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A methodology for three-dimensionally printing ultrasoft silicone with a functional stiffness gradient is presented. Ultraviolet-cure silicone was deposited via two independently controlled extruders into a thixotropic, gel-like, silicone oil-based support matrix. Each extruder contained a different liquid silicone formulation. The extrusion rates were independently varied during printing such that the combined selectively deposited material contained different ratios of the two silicones, resulting in localized control of material stiffness. Tests to validate the process are reported, including tensile testing of homogeneous cubic specimens to quantify the range of material stiffness that could be printed, indentation testing of cuboid specimens to characterize printed stiffness gradients, and vibratory testing of synthetic multilayer vocal fold (VF) models to demonstrate that the method may be applied to the fabrication of biomechanical models for voice production research. The cubic specimens exhibited linear stress-strain data with tensile elasticity modulus values between 1.11 and 27.1 kPa, more than a factor of 20 in stiffness variation. The cuboid specimens exhibited material variations that were visually recognizable and quantifiable via indentation testing. The VF models withstood rigorous phonatory flow-induced vibration and exhibited vibratory characteristics comparable to those of previous models. Overall, while process refinements are needed, the results of these tests demonstrate the ability to print ultrasoft silicone with stiffness gradients.

具有功能刚度梯度的超软硅树脂的三维打印
本文介绍了一种三维打印具有功能性硬度梯度的超软硅胶的方法。紫外线固化硅胶通过两台独立控制的挤出机沉积到触变性凝胶状硅油基支撑矩阵中。每个挤出机都含有不同的液态硅酮配方。在印刷过程中,挤出速度可独立变化,这样,选择性沉积的组合材料就包含了不同比例的两种有机硅,从而实现了对材料刚度的局部控制。报告还介绍了验证该工艺的测试,包括对均质立方体试样进行拉伸测试,以量化可印刷的材料刚度范围;对立方体试样进行压痕测试,以确定印刷刚度梯度的特征;以及对合成多层声带(VF)模型进行振动测试,以证明该方法可用于制作发声研究的生物力学模型。立方体试样显示出线性应力-应变数据,拉伸弹性模量值介于 1.11 和 27.1 千帕之间,刚度变化超过 20 倍。立方体试样表现出的材料变化可通过压痕测试进行直观识别和量化。VF 模型经受住了严格的声流诱导振动,并表现出与之前模型相当的振动特性。总之,虽然还需要对工艺进行改进,但这些测试结果证明了打印具有硬度梯度的超软硅胶的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信