Zhengdong Fei, D. Zheng, P. Fan, Feng Chen, Mingqiang Zhong
{"title":"PNIPAAM/SA pH-responsive microcapsules based on chemical and non-covalent crosslinking","authors":"Zhengdong Fei, D. Zheng, P. Fan, Feng Chen, Mingqiang Zhong","doi":"10.1515/polyeng-2020-0172","DOIUrl":null,"url":null,"abstract":"Abstract A triple interpenetrating polymer network (IPN) with dual responses to temperature and pH was constructed based on chemical crosslinking and electrostatic interaction. In this IPN, CaCO3 microspheres were used as the kernel and PNIPAAM/sodium alginate microcapsules were prepared by the inverse emulsion polymerization method. Research results demonstrated that CaCO3 kernels were decomposed into Ca2+ and CO2 at pH 1.2. Such decomposition facilitated the formation of triple IPN of Ca2+ crosslinking. Moreover, microcapsules were expanded by tension of CO2 and the volume increased to 3.55 × 105 times that of the original microcapsules, with capsules remaining an intact morphology. These microcapsules loading doxorubicin hydrochloride (DOX) stability and responses to environment were investigated. No drug overflow was observed at pH 7.4, indicating the high stability of microcapsules. However, DOX was released gradually in the simulated human stomach acid with a weak solution of hydrochloric acid (pH 1.2, 37 °C). This showed that the prepared microcapsules were feasible for drug-loaded capsules and the controlled drug release behavior could relieve side effects of drugs to human body. Moreover, it will help to increase the drug utilization and realize accurate treatment.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"41 1","pages":"65 - 71"},"PeriodicalIF":1.7000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/polyeng-2020-0172","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2020-0172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A triple interpenetrating polymer network (IPN) with dual responses to temperature and pH was constructed based on chemical crosslinking and electrostatic interaction. In this IPN, CaCO3 microspheres were used as the kernel and PNIPAAM/sodium alginate microcapsules were prepared by the inverse emulsion polymerization method. Research results demonstrated that CaCO3 kernels were decomposed into Ca2+ and CO2 at pH 1.2. Such decomposition facilitated the formation of triple IPN of Ca2+ crosslinking. Moreover, microcapsules were expanded by tension of CO2 and the volume increased to 3.55 × 105 times that of the original microcapsules, with capsules remaining an intact morphology. These microcapsules loading doxorubicin hydrochloride (DOX) stability and responses to environment were investigated. No drug overflow was observed at pH 7.4, indicating the high stability of microcapsules. However, DOX was released gradually in the simulated human stomach acid with a weak solution of hydrochloric acid (pH 1.2, 37 °C). This showed that the prepared microcapsules were feasible for drug-loaded capsules and the controlled drug release behavior could relieve side effects of drugs to human body. Moreover, it will help to increase the drug utilization and realize accurate treatment.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.