Investigation on the stability of networked-control integrated energy systems for frequency regulations

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Manikandan S.
{"title":"Investigation on the stability of networked-control integrated energy systems for frequency regulations","authors":"Manikandan S.","doi":"10.1016/j.ifacsc.2023.100219","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper presents the stability analysis of integrated energy systems<span> under network environment. The networked-control integrated energy systems involve time-delay in the control loop. These time-delays are time-invariant or time-varying in nature. Further, it affects the stability and dynamic performance of the integrated energy systems. In this paper stability analysis of networked-control integrated energy systems are done using Lyapunov–Krasovskii functional and linear matrix inequality techniques. The maximum amount of time-delay that establishes the stability of the integrated energy systems is determined and controller is designed with concern to the time-delay. The effect of electric vehicles and </span></span>battery energy storage system in stability delay margins of integrated energy systems is also addressed and the numerical simulations are done to verify the effectiveness of the presented results.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"25 ","pages":"Article 100219"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601823000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the stability analysis of integrated energy systems under network environment. The networked-control integrated energy systems involve time-delay in the control loop. These time-delays are time-invariant or time-varying in nature. Further, it affects the stability and dynamic performance of the integrated energy systems. In this paper stability analysis of networked-control integrated energy systems are done using Lyapunov–Krasovskii functional and linear matrix inequality techniques. The maximum amount of time-delay that establishes the stability of the integrated energy systems is determined and controller is designed with concern to the time-delay. The effect of electric vehicles and battery energy storage system in stability delay margins of integrated energy systems is also addressed and the numerical simulations are done to verify the effectiveness of the presented results.

频率调节下的网控综合能源系统稳定性研究
本文研究了网络环境下综合能源系统的稳定性分析。网络控制综合能源系统在控制回路中存在时滞问题。这些时滞本质上是时不变的或时变的。进而影响综合能源系统的稳定性和动态性能。本文利用Lyapunov-Krasovskii泛函和线性矩阵不等式技术对网络控制综合能源系统的稳定性进行了分析。确定了建立综合能量系统稳定性的最大时滞量,并根据时滞设计了控制器。研究了电动汽车和蓄电池储能系统对综合能源系统稳定延迟裕度的影响,并通过数值仿真验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信