Detection of Fake Colorized Images based on Deep Learning

Pub Date : 2023-07-21 DOI:10.1142/s0219467825500020
Khalid A. Salman, Khalid Shaker, Sufyan T. Faraj Al-Janabi
{"title":"Detection of Fake Colorized Images based on Deep Learning","authors":"Khalid A. Salman, Khalid Shaker, Sufyan T. Faraj Al-Janabi","doi":"10.1142/s0219467825500020","DOIUrl":null,"url":null,"abstract":"Image editing technologies have been advanced that can significantly enhance the image, but can also be used maliciously. Colorization is a new image editing technology that uses realistic colors to colorize grayscale photos. However, this strategy can be used on natural color images for a malicious purpose (e.g. to confuse object recognition systems that depend on the colors of objects for recognition). Image forensics is a well-developed field that examines photos of specified conditions to build confidence and authenticity. This work proposes a new fake colorized image detection approach based on the special Residual Network (ResNet) architecture. ResNets are a kind of Convolutional Neural Networks (CNNs) architecture that has been widely adopted and applied for various tasks. At first, the input image is reconstructed via a special image representation that combines color information from three separate color spaces (HSV, Lab, and Ycbcr); then, the new reconstructed images have been used for training the proposed ResNet model. Experimental results have demonstrated that our proposed method is highly generalized and significantly robust for revealing fake colorized images generated by various colorization methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image editing technologies have been advanced that can significantly enhance the image, but can also be used maliciously. Colorization is a new image editing technology that uses realistic colors to colorize grayscale photos. However, this strategy can be used on natural color images for a malicious purpose (e.g. to confuse object recognition systems that depend on the colors of objects for recognition). Image forensics is a well-developed field that examines photos of specified conditions to build confidence and authenticity. This work proposes a new fake colorized image detection approach based on the special Residual Network (ResNet) architecture. ResNets are a kind of Convolutional Neural Networks (CNNs) architecture that has been widely adopted and applied for various tasks. At first, the input image is reconstructed via a special image representation that combines color information from three separate color spaces (HSV, Lab, and Ycbcr); then, the new reconstructed images have been used for training the proposed ResNet model. Experimental results have demonstrated that our proposed method is highly generalized and significantly robust for revealing fake colorized images generated by various colorization methods.
分享
查看原文
基于深度学习的假彩色图像检测
先进的图像编辑技术可以显著增强图像,但也可以被恶意使用。着色是一种新的图像编辑技术,它使用逼真的颜色对灰度照片进行着色。然而,这种策略可以用于自然颜色图像的恶意目的(例如,混淆依赖物体颜色进行识别的物体识别系统)。图像取证是一个发达的领域,通过检查特定条件下的照片来建立信心和真实性。本文提出了一种基于特殊残差网络(ResNet)架构的伪彩色图像检测方法。ResNets是卷积神经网络(Convolutional Neural Networks, cnn)的一种架构,已被广泛应用于各种任务。首先,通过一种特殊的图像表示来重建输入图像,该图像表示结合了来自三个独立颜色空间(HSV, Lab和Ycbcr)的颜色信息;然后,将重构后的图像用于ResNet模型的训练。实验结果表明,我们提出的方法具有高度的泛化性和显著的鲁棒性,可以显示由各种着色方法生成的假彩色图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信