Determination of DNA architecture of bacteria under various types of stress, methodological approaches, problems, and solutions.

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2023-09-08 eCollection Date: 2023-10-01 DOI:10.1007/s12551-023-01122-0
Yu F Krupyanskii
{"title":"Determination of DNA architecture of bacteria under various types of stress, methodological approaches, problems, and solutions.","authors":"Yu F Krupyanskii","doi":"10.1007/s12551-023-01122-0","DOIUrl":null,"url":null,"abstract":"<p><p>Actively growing cells maintain a dynamic, far from equilibrium order through metabolism. Under starvation stress or under stress of exposure to the analog of the anabiosis autoinducer (4-hexylresorcinol), cells go into a dormant state (almost complete lack of metabolism) or even into a mummified state. In a dormant state, cells are forced to use the physical mechanisms of DNA protection. The architecture of DNA in the dormant and mummified state of cells was studied by x-ray diffraction of synchrotron radiation and transmission electron microscopy (TEM). Diffraction experiments indicate the appearance of an ordered organization of DNA. TEM made it possible to visualize the type of DNA ordering. Intracellular nanocrystalline, liquid-crystalline, and folded nucleosome-like structures of DNA have been found. The structure of DNA within a cell in an anabiotic dormant state and dormant state (starvation stress) coincides (forms nanocrystalline structures). Data suggest the universality of DNA condensation by a protein Dps for a dormant state, regardless of the type of stress. The mummified state is very different in structure from the dormant state (has no ordering within a cell). It turned out that it is possible to visualize DNA conformation in toroidal and liquid crystal structures in which there is either no or a very small amount of the Dps protein. Observation of the DNA conformation in nanocrystals and folded nucleosome-like structures so far has been inconclusive. The methodological advances described will facilitate high-resolution visualization of the DNA conformation in the near future.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01122-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Actively growing cells maintain a dynamic, far from equilibrium order through metabolism. Under starvation stress or under stress of exposure to the analog of the anabiosis autoinducer (4-hexylresorcinol), cells go into a dormant state (almost complete lack of metabolism) or even into a mummified state. In a dormant state, cells are forced to use the physical mechanisms of DNA protection. The architecture of DNA in the dormant and mummified state of cells was studied by x-ray diffraction of synchrotron radiation and transmission electron microscopy (TEM). Diffraction experiments indicate the appearance of an ordered organization of DNA. TEM made it possible to visualize the type of DNA ordering. Intracellular nanocrystalline, liquid-crystalline, and folded nucleosome-like structures of DNA have been found. The structure of DNA within a cell in an anabiotic dormant state and dormant state (starvation stress) coincides (forms nanocrystalline structures). Data suggest the universality of DNA condensation by a protein Dps for a dormant state, regardless of the type of stress. The mummified state is very different in structure from the dormant state (has no ordering within a cell). It turned out that it is possible to visualize DNA conformation in toroidal and liquid crystal structures in which there is either no or a very small amount of the Dps protein. Observation of the DNA conformation in nanocrystals and folded nucleosome-like structures so far has been inconclusive. The methodological advances described will facilitate high-resolution visualization of the DNA conformation in the near future.

在各种压力下细菌DNA结构的测定、方法、问题和解决方案
活跃生长的细胞通过代谢维持一个动态的、远离平衡的秩序。在饥饿压力下或暴露于类似于复苏自诱导剂(4-己基间苯二酚)的压力下,细胞进入休眠状态(几乎完全缺乏代谢),甚至进入木乃伊状态。在休眠状态下,细胞被迫使用DNA保护的物理机制。采用同步辐射x射线衍射和透射电子显微镜(TEM)研究了细胞休眠和木乃伊状态下DNA的结构。衍射实验表明DNA的结构是有序的。透射电镜可以可视化DNA排序的类型。细胞内的纳米晶、液晶和折叠的核小体状DNA结构已被发现。细胞内DNA的结构在厌氧休眠状态和休眠状态(饥饿应激)是一致的(形成纳米晶体结构)。数据表明,无论应激类型如何,DNA在休眠状态下由蛋白质Dps凝结的普遍性。木乃伊状态在结构上与休眠状态非常不同(细胞内没有秩序)。结果证明,在没有或极少量Dps蛋白的环状和液晶结构中可视化DNA构象是可能的。到目前为止,对纳米晶体和折叠核小体样结构中的DNA构象的观察还没有定论。在不久的将来,所描述的方法进步将促进DNA构象的高分辨率可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信