Generalized Markovian Quantity Distribution Systems: Social Science Applications

IF 2.7 2区 社会学 Q1 SOCIOLOGY
N. Friedkin, A. Proskurnikov
{"title":"Generalized Markovian Quantity Distribution Systems: Social Science Applications","authors":"N. Friedkin, A. Proskurnikov","doi":"10.15195/v7.a20","DOIUrl":null,"url":null,"abstract":"Interest in the study of gene–environment interaction has recently grown due to the sudden availability of molecular genetic data—in particular, polygenic scores—in many long-running longitudinal studies. Identifying and estimating statistical interactions comes with several analytic and inferential challenges; these challenges are heightened when used to integrate observational genomic and social science data. We articulate some of these key challenges, provide new perspectives on the study of gene–environment interactions, and end by offering some practical guidance for conducting research in this area. Given the sudden availability of well-powered polygenic scores, we anticipate a substantial increase in research testing for interaction between such scores and environments. The issues we discuss, if not properly addressed, may impact the enduring scientific value of gene–environment interaction studies.","PeriodicalId":22029,"journal":{"name":"Sociological Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Science","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.15195/v7.a20","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Interest in the study of gene–environment interaction has recently grown due to the sudden availability of molecular genetic data—in particular, polygenic scores—in many long-running longitudinal studies. Identifying and estimating statistical interactions comes with several analytic and inferential challenges; these challenges are heightened when used to integrate observational genomic and social science data. We articulate some of these key challenges, provide new perspectives on the study of gene–environment interactions, and end by offering some practical guidance for conducting research in this area. Given the sudden availability of well-powered polygenic scores, we anticipate a substantial increase in research testing for interaction between such scores and environments. The issues we discuss, if not properly addressed, may impact the enduring scientific value of gene–environment interaction studies.
广义马尔可夫数量分配系统:社会科学应用
最近,由于在许多长期的纵向研究中突然出现了分子遗传数据,特别是多基因评分,人们对基因与环境相互作用研究的兴趣越来越大。识别和估计统计相互作用伴随着几个分析和推理挑战;当用于整合观测基因组和社会科学数据时,这些挑战会加剧。我们阐明了其中的一些关键挑战,为基因与环境相互作用的研究提供了新的视角,并最终为在该领域进行研究提供了一些实用的指导。考虑到强大的多基因评分的突然出现,我们预计这种评分与环境之间相互作用的研究测试会大幅增加。如果我们讨论的问题得不到妥善解决,可能会影响基因与环境相互作用研究的持久科学价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sociological Science
Sociological Science Social Sciences-Social Sciences (all)
CiteScore
4.90
自引率
2.90%
发文量
13
审稿时长
6 weeks
期刊介绍: Sociological Science is an open-access, online, peer-reviewed, international journal for social scientists committed to advancing a general understanding of social processes. Sociological Science welcomes original research and commentary from all subfields of sociology, and does not privilege any particular theoretical or methodological approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信