Using Big Data and Text Analytics to Understand How Customer Experiences Posted on Yelp.com Impact the Hospitality Industry

Q2 Economics, Econometrics and Finance
P. Ting, Szu-Ling Chen, Hsiang Chen, W. Fang
{"title":"Using Big Data and Text Analytics to Understand How Customer Experiences Posted on Yelp.com Impact the Hospitality Industry","authors":"P. Ting, Szu-Ling Chen, Hsiang Chen, W. Fang","doi":"10.7903/CMR.17730","DOIUrl":null,"url":null,"abstract":"This study combines programming and data mining to analyze consumer reviews extracted from Yelp.com to deconstruct the hotel guest experience and examine its association with satisfaction ratings. The findings show many important factors in customer reviews that carry varying weights and find the meaningful semantic compositions inside the customer reviews. More importantly, our approach makes it possible to use big data analytics to find different perspectives on variables that might not have been studied in the hospitality literature. \n \nKeywords: Big Data, Text Analytics, Data Mining, Social Website, Guest Experience Satisfaction, Hotel Management \n \nTo cite this document: Pei-Ju Lucy Ting, Szu-Ling Chen, Hsiang Chen, and Wen-Chang Fang, \"Using Big Data and Text Analytics to Understand How Customer Experiences Posted on Yelp.com Impact the Hospitality Industry\", Contemporary Management Research, Vol.13, No.2, pp. 107-130, 2017. \n \nPermanent link to this document: \nhttp://dx.doi.org/10.7903/cmr.17730","PeriodicalId":36973,"journal":{"name":"Contemporary Management Research","volume":"13 1","pages":"107"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7903/CMR.17730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 17

Abstract

This study combines programming and data mining to analyze consumer reviews extracted from Yelp.com to deconstruct the hotel guest experience and examine its association with satisfaction ratings. The findings show many important factors in customer reviews that carry varying weights and find the meaningful semantic compositions inside the customer reviews. More importantly, our approach makes it possible to use big data analytics to find different perspectives on variables that might not have been studied in the hospitality literature. Keywords: Big Data, Text Analytics, Data Mining, Social Website, Guest Experience Satisfaction, Hotel Management To cite this document: Pei-Ju Lucy Ting, Szu-Ling Chen, Hsiang Chen, and Wen-Chang Fang, "Using Big Data and Text Analytics to Understand How Customer Experiences Posted on Yelp.com Impact the Hospitality Industry", Contemporary Management Research, Vol.13, No.2, pp. 107-130, 2017. Permanent link to this document: http://dx.doi.org/10.7903/cmr.17730
使用大数据和文本分析了解Yelp.com上发布的客户体验如何影响酒店业
本研究结合编程和数据挖掘来分析从Yelp.com中提取的消费者评论,以解构酒店客人的体验,并检验其与满意度评级的关系。研究结果显示了客户评论中的许多重要因素,这些因素具有不同的权重,并在客户评论中找到了有意义的语义成分。更重要的是,我们的方法可以使用大数据分析来寻找酒店文献中可能没有研究过的变量的不同视角。关键词:大数据、文本分析、数据挖掘、社交网站、顾客体验满意度、酒店管理引用本文:丁佩菊、陈思玲、陈翔芳,“利用大数据和文本分析了解Yelp.com上发布的顾客体验如何影响酒店业”,《当代管理研究》,2017年第13卷第2期,第107-130页。本文件的永久链接:http://dx.doi.org/10.7903/cmr.17730
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contemporary Management Research
Contemporary Management Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.20
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信