Erosion protection of low‐concentration fluoride on human tooth enamel: results from surface morphology and nanomechanical and anti‐wear properties

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
L. Zheng, M. Shi
{"title":"Erosion protection of low‐concentration fluoride on human tooth enamel: results from surface morphology and nanomechanical and anti‐wear properties","authors":"L. Zheng, M. Shi","doi":"10.1049/bsbt.2020.0017","DOIUrl":null,"url":null,"abstract":"Dental erosion results in excessive tooth wear. The contribution of low-concentration fluoride used daily in the prevention and treatment of erosion has not been fully understood. In this study, the effects of fluoride (225 ppm F−) on the surface morphology and nano-mechanical and anti-wear properties of human tooth enamel were investigated to explore whether low-concentration NaF solution could help protect tooth enamel from erosion. In total, 40 enamel samples were divided into 5 groups, viz. group O: original surface with no treatment, group F: fluoride treatment (NaF, 225 ppm F−, pH 6.3), group E: erosion treatment (0.001 M citric acid, pH 3.2, 3 min), group EF: erosion treatment and then fluorination and group FE: fluoride treatment and then erosion. The mechanical and anti-wear properties of enamel samples were examined using a nano-indentation/scratch technique. Both surface morphology and scratch morphology of enamel samples were observed with scanning electron microscopy. The results showed that, from the perspectives of surface morphology and anti-wear properties, fluorination with low-concentration fluoride (225 ppm F−) before erosion has a certain potential for protection against dental erosion. Fluoride treatment after erosion has no obvious impact on the remineralisation of eroded enamel.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1049/bsbt.2020.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dental erosion results in excessive tooth wear. The contribution of low-concentration fluoride used daily in the prevention and treatment of erosion has not been fully understood. In this study, the effects of fluoride (225 ppm F−) on the surface morphology and nano-mechanical and anti-wear properties of human tooth enamel were investigated to explore whether low-concentration NaF solution could help protect tooth enamel from erosion. In total, 40 enamel samples were divided into 5 groups, viz. group O: original surface with no treatment, group F: fluoride treatment (NaF, 225 ppm F−, pH 6.3), group E: erosion treatment (0.001 M citric acid, pH 3.2, 3 min), group EF: erosion treatment and then fluorination and group FE: fluoride treatment and then erosion. The mechanical and anti-wear properties of enamel samples were examined using a nano-indentation/scratch technique. Both surface morphology and scratch morphology of enamel samples were observed with scanning electron microscopy. The results showed that, from the perspectives of surface morphology and anti-wear properties, fluorination with low-concentration fluoride (225 ppm F−) before erosion has a certain potential for protection against dental erosion. Fluoride treatment after erosion has no obvious impact on the remineralisation of eroded enamel.
低浓度氟化物对人类牙釉质的腐蚀保护:表面形态和纳米力学和抗磨损性能的结果
牙齿腐蚀导致牙齿过度磨损。日常使用的低浓度氟化物在预防和治疗侵蚀中的作用尚未完全了解。在本研究中,研究了氟(225ppm F−)对人牙釉质表面形貌、纳米力学和抗磨损性能的影响,以探讨低浓度NaF溶液是否有助于保护牙釉质免受侵蚀。将40个牙釉质样品分为5组:O组:未处理的原始表面,F组:氟化处理(NaF, 225 ppm F−,pH 6.3), E组:腐蚀处理(0.001 M柠檬酸,pH 3.2, 3 min), EF组:腐蚀处理后氟化,FE组:氟化处理后腐蚀。采用纳米压痕/划痕技术研究了牙釉质样品的力学性能和抗磨损性能。用扫描电镜观察釉质样品的表面形貌和划痕形貌。结果表明,从表面形貌和抗磨损性能的角度来看,在腐蚀前用低浓度氟(225ppm F−)氟化具有一定的防牙蚀潜力。腐蚀后氟化处理对腐蚀牙釉质的再矿化无明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信