Igor I. Wertgeim, Vadim A. Sharifulin, Albert N. Sharifulin
{"title":"Dissipative Structures of Marangoni Convection in a Thin Layer of liquid with Lattice of Localized and Continuously Distributed Heat Sources and Sinks","authors":"Igor I. Wertgeim, Vadim A. Sharifulin, Albert N. Sharifulin","doi":"10.1007/s12217-023-10061-0","DOIUrl":null,"url":null,"abstract":"<div><p>The three-dimensional solutions of nonlinear long-wavelength approximations for the problem of Marangoni convection in a thin horizontal layer of a viscous incompressible fluid with a free surface is being considered. The temperature distribution in the liquid corresponds to a uniform vertical gradient distorted by the imposition of a weakly inhomogeneous heat flux localized in the horizontal plane, caused by a lattice of either localized or continuously distributed heat sources and sinks. The lower boundary of the layer is solid and thermally insulated, while the upper one is free and deformable. The statement of the problem is motivated by the search for ways to control convection structures. The problem in long-wave approximation is described by a system of nonlinear transport equations for the amplitudes of temperature distribution and surface deformation. The numerical solution of the problem is based on the pseudospectral method. The dynamics of non-stationary dissipative structures is considered.\n</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10061-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10061-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional solutions of nonlinear long-wavelength approximations for the problem of Marangoni convection in a thin horizontal layer of a viscous incompressible fluid with a free surface is being considered. The temperature distribution in the liquid corresponds to a uniform vertical gradient distorted by the imposition of a weakly inhomogeneous heat flux localized in the horizontal plane, caused by a lattice of either localized or continuously distributed heat sources and sinks. The lower boundary of the layer is solid and thermally insulated, while the upper one is free and deformable. The statement of the problem is motivated by the search for ways to control convection structures. The problem in long-wave approximation is described by a system of nonlinear transport equations for the amplitudes of temperature distribution and surface deformation. The numerical solution of the problem is based on the pseudospectral method. The dynamics of non-stationary dissipative structures is considered.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology