Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Hassan A. Hassan, M. A. Mohamed, M. Essai, Hamada Esmaiel, Ahmed S. A. Mubarak, O. Omer
{"title":"Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems","authors":"Hassan A. Hassan, M. A. Mohamed, M. Essai, Hamada Esmaiel, Ahmed S. A. Mubarak, O. Omer","doi":"10.2478/jee-2023-0022","DOIUrl":null,"url":null,"abstract":"Abstract Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"167 - 176"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.
基于深度学习的OFDM无线系统信道状态估计与信号检测
深度学习(DL)算法可以提高无线通信系统的效率,解决许多物理层挑战。信道状态估计(CSE)和信号检测(SD)是提高OFDM无线系统性能的关键部分。在这种情况下,我们引入了一种DL模型,作为OFDM无线系统中瑞利衰落信道上隐式CSE和SD的有效替代方案。DL模型基于门控循环单元(GRU)神经网络。采用接收到的与传输数据符号相关的OFDM信号并添加导频符号作为输入,离线训练DL GRU模型。然后,在线实现对传输数据的准确、直接检测。以符号错误率为度量参数的实验结果表明,与传统的最小二乘和最小均方误差估计方法相比,本文提出的基于DL gru的CSE/SD方法具有更好的性能。此外,训练后的深度学习GRU模型优于现有的深度学习信道估计器。此外,它提供了最高的CSE/SD质量,较少的导频,短/空循环前缀,并且不需要事先了解信道统计信息。因此,所提出的DL - GRU模型是OFDM无线通信系统中CSE/SD的一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信