Unsupervised machine learning of topological phase transitions from experimental data

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Niklas Käming, Anna Dawid, Korbinian Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin, C. Weitenberg
{"title":"Unsupervised machine learning of topological phase transitions from experimental data","authors":"Niklas Käming, Anna Dawid, Korbinian Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin, C. Weitenberg","doi":"10.1088/2632-2153/abffe7","DOIUrl":null,"url":null,"abstract":"Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/abffe7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 38

Abstract

Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
基于实验数据的拓扑相变无监督机器学习
识别相变是量子多体物理的关键挑战之一。最近,机器学习方法已被证明是一种从噪声和不完美数据中定位相位边界的替代方法,而无需了解阶参数。在这里,我们将不同的无监督机器学习技术,包括异常检测和影响函数,应用于来自超冷原子的实验数据。通过这种方法,我们以完全无偏的方式得到了Haldane模型的拓扑相图。我们表明,这些方法可以成功地应用于有限温度下的实验数据和Floquet系统的数据,当数据后处理到单个微运动阶段时。我们的工作为复杂多体系统中新的奇异相的无监督检测提供了一个基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信