Rapid Volumetric Additive Manufacturing in Solid State: A Demonstration to Produce Water-Content-Dependent Cooling/Heating/Water-Responsive Shape Memory Hydrogels.
Abhijit Vijay Salvekar, Faqrul Hasif Bin Abdul Nasir, Ya Hui Chen, Sharanya Maiti, Vivek Damodar Ranjan, Hong Mei Chen, Han Wang, Wei Min Huang
{"title":"Rapid Volumetric Additive Manufacturing in Solid State: A Demonstration to Produce Water-Content-Dependent Cooling/Heating/Water-Responsive Shape Memory Hydrogels.","authors":"Abhijit Vijay Salvekar, Faqrul Hasif Bin Abdul Nasir, Ya Hui Chen, Sharanya Maiti, Vivek Damodar Ranjan, Hong Mei Chen, Han Wang, Wei Min Huang","doi":"10.1089/3dp.2021.0279","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we demonstrate the feasibility of rapid volumetric additive manufacturing in the solid state. This additive manufacturing technology is particularly useful in outer space missions (microgravity) and/or for harsh environment (e.g., on ships and vehicles during maneuvering, or on airplanes during flight). A special thermal gel is applied here to demonstrate the concept, that is, ultraviolet crosslinking in the solid state. The produced hydrogels are characterized and the water-content-dependent heating/cooling/water-responsive shape memory effect is revealed. Here, the shape memory feature is required to eliminate the deformation induced in the process of removing the uncrosslinked part from the crosslinked part in the last step of this additive manufacturing process.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0279","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we demonstrate the feasibility of rapid volumetric additive manufacturing in the solid state. This additive manufacturing technology is particularly useful in outer space missions (microgravity) and/or for harsh environment (e.g., on ships and vehicles during maneuvering, or on airplanes during flight). A special thermal gel is applied here to demonstrate the concept, that is, ultraviolet crosslinking in the solid state. The produced hydrogels are characterized and the water-content-dependent heating/cooling/water-responsive shape memory effect is revealed. Here, the shape memory feature is required to eliminate the deformation induced in the process of removing the uncrosslinked part from the crosslinked part in the last step of this additive manufacturing process.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.