Zhiwu Xu, Zhengwei Li, Lin Ma, Bo Junlan, Jiuchun Yan
{"title":"Ultrasonic-Driven Spreading of Liquid Solder on Nonwetting Substrates","authors":"Zhiwu Xu, Zhengwei Li, Lin Ma, Bo Junlan, Jiuchun Yan","doi":"10.29391/2020.99.016","DOIUrl":null,"url":null,"abstract":"In this work, the spreading of a solder droplet on a substrate agitated by ultrasonic vibration was recorded by a high-speed camera. The dynamics and physical processes of the spreading, such as corrugate formation and atomization, were investigated. Results showed the solder droplet was able to spread on a nonwetting substrate, and it presented periodic expanding-shrinking spreading characteristics with a periodicity of dozens of acoustic periods. Corrugates formed as a result of the capillary wave propagation on the droplet, and the formation became intensive on a violently vibrating surface. Atomization preferentially occurred at the spreading front during solder expansion, where the liquid solder appeared as a film and burst on the whole droplet with strong vibration. High ultrasonic power resulted in fast spreading and a large spreading diameter. In particular, the solder droplet exhibited fast spreading and a large spreading diameter on the TC4 alloy with high characteristic impedance. The Sn-4Cu solder with large viscosity spread slowly and exhibited a small spreading diameter.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2020.99.016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
In this work, the spreading of a solder droplet on a substrate agitated by ultrasonic vibration was recorded by a high-speed camera. The dynamics and physical processes of the spreading, such as corrugate formation and atomization, were investigated. Results showed the solder droplet was able to spread on a nonwetting substrate, and it presented periodic expanding-shrinking spreading characteristics with a periodicity of dozens of acoustic periods. Corrugates formed as a result of the capillary wave propagation on the droplet, and the formation became intensive on a violently vibrating surface. Atomization preferentially occurred at the spreading front during solder expansion, where the liquid solder appeared as a film and burst on the whole droplet with strong vibration. High ultrasonic power resulted in fast spreading and a large spreading diameter. In particular, the solder droplet exhibited fast spreading and a large spreading diameter on the TC4 alloy with high characteristic impedance. The Sn-4Cu solder with large viscosity spread slowly and exhibited a small spreading diameter.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.