Atef El Jery, Amimul Ahsan, Saad Sh. Sammen, Abdallah Shanableh, Dinesh Sain, Andrés Alexis Ramírez-Coronel, Md. Alhaz Uddin, Mohammed Abdul Jaleel Maktoof, Md. Shafiquzzaman, Nadhir Al-Ansari
{"title":"Industrial oily wastewater treatment by microfiltration using silver nanoparticle-incorporated poly (acrylonitrile-styrene) membrane","authors":"Atef El Jery, Amimul Ahsan, Saad Sh. Sammen, Abdallah Shanableh, Dinesh Sain, Andrés Alexis Ramírez-Coronel, Md. Alhaz Uddin, Mohammed Abdul Jaleel Maktoof, Md. Shafiquzzaman, Nadhir Al-Ansari","doi":"10.1186/s12302-023-00764-x","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane filtration exhibit operational limitations such as biofouling, which leads to concentration polarization and reduces permeability and selectivity, despite advantages such as low operating cost, high selectivity, and permeability. In recent years, the antibacterial properties of silver nanoparticles (AgNPs) have been investigated for improving membrane processes; however, the fouling phenomena in presence of AgNPs in the membrane matrix have not been fully discussed. Herein, the antifouling properties of a poly (acrylonitrile-styrene) copolymer incorporated with AgNPs were studied in a microfiltration membrane process. The Creighton method was used to synthesize AgNPs, and the effects of AgNPs on the porosity, morphology, pore size, mechanical strength, permeability, and selectivity of the membranes were investigated. Moreover, to investigate the biofouling of the obtained membranes, microfiltration of industrial oily wastewater was performed at constant pressure over three cycles. Using AgNPs in the membrane matrix resulted in enhanced antifouling properties of the copolymer membrane, which is related to the structure of the AgNPs in the casting solution, as proven by SAXS analysis. The results show that the CFU% for Staphylococcus aureus and E.coli reach 2% and 6%, respectively. Finally, the Derjaguin–Landau–Verwey–Overbeek (DLVO) thermodynamic model was applied to study the antifouling mechanism, correctly predict the separation behavior in the membrane, and design, simulate, and optimize the separation processes in the membrane separation plantsa. The DLVO model could predict the separation behavior in the synthesized membranes, and the poly(acrylonitrile-styrene) copolymer membranes containing AgNPs were proven have promising industrial wastewater treatment applications.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00764-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00764-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane filtration exhibit operational limitations such as biofouling, which leads to concentration polarization and reduces permeability and selectivity, despite advantages such as low operating cost, high selectivity, and permeability. In recent years, the antibacterial properties of silver nanoparticles (AgNPs) have been investigated for improving membrane processes; however, the fouling phenomena in presence of AgNPs in the membrane matrix have not been fully discussed. Herein, the antifouling properties of a poly (acrylonitrile-styrene) copolymer incorporated with AgNPs were studied in a microfiltration membrane process. The Creighton method was used to synthesize AgNPs, and the effects of AgNPs on the porosity, morphology, pore size, mechanical strength, permeability, and selectivity of the membranes were investigated. Moreover, to investigate the biofouling of the obtained membranes, microfiltration of industrial oily wastewater was performed at constant pressure over three cycles. Using AgNPs in the membrane matrix resulted in enhanced antifouling properties of the copolymer membrane, which is related to the structure of the AgNPs in the casting solution, as proven by SAXS analysis. The results show that the CFU% for Staphylococcus aureus and E.coli reach 2% and 6%, respectively. Finally, the Derjaguin–Landau–Verwey–Overbeek (DLVO) thermodynamic model was applied to study the antifouling mechanism, correctly predict the separation behavior in the membrane, and design, simulate, and optimize the separation processes in the membrane separation plantsa. The DLVO model could predict the separation behavior in the synthesized membranes, and the poly(acrylonitrile-styrene) copolymer membranes containing AgNPs were proven have promising industrial wastewater treatment applications.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.