Cordial elements and dimensions of affine Deligne–Lusztig varieties

IF 2.8 1区 数学 Q1 MATHEMATICS
Xuhua He
{"title":"Cordial elements and dimensions of affine Deligne–Lusztig varieties","authors":"Xuhua He","doi":"10.1017/fmp.2021.10","DOIUrl":null,"url":null,"abstract":"Abstract The affine Deligne–Lusztig variety \n$X_w(b)$\n in the affine flag variety of a reductive group \n${\\mathbf G}$\n depends on two parameters: the \n$\\sigma $\n -conjugacy class \n$[b]$\n and the element w in the Iwahori–Weyl group \n$\\tilde {W}$\n of \n${\\mathbf G}$\n . In this paper, for any given \n$\\sigma $\n -conjugacy class \n$[b]$\n , we determine the nonemptiness pattern and the dimension formula of \n$X_w(b)$\n for most \n$w \\in \\tilde {W}$\n .","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.10","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

Abstract The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
仿射Deligne–Lusztig变种的Cordial元素和维数
摘要还原群${\mathbf G}$的仿射旗变体中的仿射Deligne–Lusztig变体$X_w(b)$取决于两个参数:$\sigma$-共轭类$[b]$和${\math bf G}$的Iwahori–Weyl群$\tilde{w}$中的元素w。在本文中,对于任何给定的$\sigma$共轭类$[b]$,我们确定了$X_w(b)$的非空模式和大多数$w\In\tilde{w}$的维数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信