Mesoporous magnetic nanoparticles conjugated aptamers for exosomes capture and detection of Alzheimer's disease

Q1 Medicine
Guidan Wang , Zhenshan Pan , Xiaorui Zhu , Ruyue Yang , Rong Yang , Tingting Yang , Dong Hu , Aihua Jing , Gaofeng Liang
{"title":"Mesoporous magnetic nanoparticles conjugated aptamers for exosomes capture and detection of Alzheimer's disease","authors":"Guidan Wang ,&nbsp;Zhenshan Pan ,&nbsp;Xiaorui Zhu ,&nbsp;Ruyue Yang ,&nbsp;Rong Yang ,&nbsp;Tingting Yang ,&nbsp;Dong Hu ,&nbsp;Aihua Jing ,&nbsp;Gaofeng Liang","doi":"10.1016/j.engreg.2023.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Exosomes are nanoscale membrane-enclosed extracellular vesicles secreted by various cells, which have enormous potential as disease biomarkers for clinical application. However, the isolation and detection of exosomes remain enormous challenges, which limits their further application. Herein, inspired by immunomagnetic beads, a magnetic nanoparticle conjugated aptamer was repurposed for the effective capture and detection of exosomes. The magnetic nanoparticles, composed of Fe<sub>3</sub>O<sub>4</sub> synthesized by the hydrothermal method as the core and coupled with gold nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@Au), provide a large specific surface area, making the resulting composite material an effective platform for exosome capture. Furthermore, the elution of captured exosomes with 1.0 M NaCl made downstream analysis of exosomes possible. The preliminary clinical application value of the composite in exosome analyses of serum from healthy individuals and patients with Alzheimer's disease (AD) has also been verified, which could provide a promising platform for biomedical and clinical diagnosis.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"4 4","pages":"Pages 349-356"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138123000373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Exosomes are nanoscale membrane-enclosed extracellular vesicles secreted by various cells, which have enormous potential as disease biomarkers for clinical application. However, the isolation and detection of exosomes remain enormous challenges, which limits their further application. Herein, inspired by immunomagnetic beads, a magnetic nanoparticle conjugated aptamer was repurposed for the effective capture and detection of exosomes. The magnetic nanoparticles, composed of Fe3O4 synthesized by the hydrothermal method as the core and coupled with gold nanoparticles (Fe3O4@Au), provide a large specific surface area, making the resulting composite material an effective platform for exosome capture. Furthermore, the elution of captured exosomes with 1.0 M NaCl made downstream analysis of exosomes possible. The preliminary clinical application value of the composite in exosome analyses of serum from healthy individuals and patients with Alzheimer's disease (AD) has also been verified, which could provide a promising platform for biomedical and clinical diagnosis.

Abstract Image

介孔磁性纳米颗粒共轭适配体用于阿尔茨海默病的外泌体捕获和检测
外泌体是由多种细胞分泌的纳米级膜封闭细胞外囊泡,作为疾病生物标志物具有巨大的临床应用潜力。然而,外泌体的分离和检测仍然是巨大的挑战,这限制了它们的进一步应用。在此,受免疫磁珠的启发,磁性纳米颗粒共轭适配体被重新用于有效捕获和检测外泌体。该磁性纳米颗粒以水热法合成的Fe3O4为核心,与金纳米颗粒(Fe3O4@Au)偶联,提供了较大的比表面积,使所得到的复合材料成为捕获外胞体的有效平台。此外,用1.0 M NaCl洗脱捕获的外泌体,使外泌体的下游分析成为可能。该复合物在健康个体和阿尔茨海默病(AD)患者血清外泌体分析中的初步临床应用价值也得到了验证,为生物医学和临床诊断提供了一个有前景的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信