{"title":"When is M0,n(ℙ1,1) a Mori dream space?","authors":"C. Fontanari","doi":"10.1515/advgeom-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract The moduli space M¯0,n(ℙ1,1) ${{\\bar{M}}_{0,n}}\\left( {{\\mathbb{P}}^{1}},1 \\right)$of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3 of (n+3) ${{\\bar{M}}_{0,n+3}}\\; \\text{of} \\;(n+3)$pointed rational curves is, and M¯0,n(ℙ1,1) ${{\\bar{M}}_{0,n}}\\left( {{\\mathbb{P}}^{1}},1 \\right)$is a log Fano variety for n ≤ 5.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0019","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The moduli space M¯0,n(ℙ1,1) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3 of (n+3) ${{\bar{M}}_{0,n+3}}\; \text{of} \;(n+3)$pointed rational curves is, and M¯0,n(ℙ1,1) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$is a log Fano variety for n ≤ 5.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.