"Some sequences of Euler type, their convergences and their stability"

IF 1.4 4区 数学 Q1 MATHEMATICS
D. Marinescu, M. Monea
{"title":"\"Some sequences of Euler type, their convergences and their stability\"","authors":"D. Marinescu, M. Monea","doi":"10.37193/cjm.2022.02.16","DOIUrl":null,"url":null,"abstract":"\"The aim of this paper is to present some sequences of Euler type. We will explore the sequences $\\left( F_{n}\\right) _{n\\geq 1},$ defined by $% F_{n}\\left( x\\right) =\\sum_{k=1}^{n}f\\left( k\\right) -\\int_{1}^{n+x}f\\left( t\\right) dt,$ for any $n\\geq 1$ and $x\\in \\left[ 0,1\\right] ,$ where $f$ is a local integrable and positive function defined on $\\left[ 1,\\infty \\right) $. Starting from some particular example we will find that this sequence is uniformly convergent to a constant function. Also, we present a stability result.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"The aim of this paper is to present some sequences of Euler type. We will explore the sequences $\left( F_{n}\right) _{n\geq 1},$ defined by $% F_{n}\left( x\right) =\sum_{k=1}^{n}f\left( k\right) -\int_{1}^{n+x}f\left( t\right) dt,$ for any $n\geq 1$ and $x\in \left[ 0,1\right] ,$ where $f$ is a local integrable and positive function defined on $\left[ 1,\infty \right) $. Starting from some particular example we will find that this sequence is uniformly convergent to a constant function. Also, we present a stability result."
若干欧拉型序列及其收敛性和稳定性
本文的目的是给出一些欧拉型数列。我们将探索序列$\left(F_{n}\right) _{n\geq 1},$定义为$% F_{n}\left(x\right) =\sum_{k=1}^{n}f\left(k\right) -\int_{1}^{n+x}f\left(t\right) dt,$适用于任意$n\geq 1$和$x\in \left[0,1\right],$其中$f$是定义在$\left[1,\infty \right) $上的一个局部可积正函数。从一些特殊的例子出发,我们将发现这个序列是一致收敛于一个常数函数的。此外,我们还提供了一个稳定的结果。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信