Imran Ali, Yanqiang Han, Qingfang Ji, Yongli Zhang, Zhiyun Wei, Jinjin Li
{"title":"Solid–solid phase transformation of aspirin at high pressures and room temperatures","authors":"Imran Ali, Yanqiang Han, Qingfang Ji, Yongli Zhang, Zhiyun Wei, Jinjin Li","doi":"10.1107/S1600576722007877","DOIUrl":null,"url":null,"abstract":"<p>Drug molecules undergo changes to their intermolecular binding patterns under extreme conditions, leading to structural phase transitions which produce different polymorphs. Polymorphism of aspirin (acetylsalicylic acid), one of the most widely consumed medications, has attracted many scientists, chemists and pharmacologists to identify its stable polymorphs and phase transformations at ambient temperatures and pressures. Here, density functional theory at the ωB97XD/6-31G* functional level is utilized to calculate the lattice constants, volumes, Gibbs free energies, vibrational spectra, stabilities and phase transitions of aspirin forms I and II at different pressures and temperatures. These computations confirm that phase transformation occurs between these two forms of aspirin at higher pressures (from 3 to 5 GPa) and near room temperatures. Taking aspirin as a case study, this work can help design, produce and store drugs, guiding scientists, chemists and pharmacologists to perform further experiments.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"55 5","pages":"1247-1254"},"PeriodicalIF":2.8000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576722007877","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Drug molecules undergo changes to their intermolecular binding patterns under extreme conditions, leading to structural phase transitions which produce different polymorphs. Polymorphism of aspirin (acetylsalicylic acid), one of the most widely consumed medications, has attracted many scientists, chemists and pharmacologists to identify its stable polymorphs and phase transformations at ambient temperatures and pressures. Here, density functional theory at the ωB97XD/6-31G* functional level is utilized to calculate the lattice constants, volumes, Gibbs free energies, vibrational spectra, stabilities and phase transitions of aspirin forms I and II at different pressures and temperatures. These computations confirm that phase transformation occurs between these two forms of aspirin at higher pressures (from 3 to 5 GPa) and near room temperatures. Taking aspirin as a case study, this work can help design, produce and store drugs, guiding scientists, chemists and pharmacologists to perform further experiments.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.