{"title":"Asymptotic behavior for stochastic plate equations with memory in unbounded domains","authors":"Xiaobin Yao","doi":"10.1515/ijnsns-2021-0383","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the dynamics of stochastic plate equations with memory in unbounded domains. More specifically, we obtain the uniform in time estimates for solutions of the problem. Based on the estimates above, we prove the existence and uniqueness of random attractors in unbounded domains. Finally, we show the upper semicontinuity of the attractors when stochastic perturbations approaches zero.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we investigate the dynamics of stochastic plate equations with memory in unbounded domains. More specifically, we obtain the uniform in time estimates for solutions of the problem. Based on the estimates above, we prove the existence and uniqueness of random attractors in unbounded domains. Finally, we show the upper semicontinuity of the attractors when stochastic perturbations approaches zero.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.