{"title":"Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing","authors":"Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi","doi":"10.1007/s11467-023-1308-0","DOIUrl":null,"url":null,"abstract":"<div><p>Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO<sub>3</sub>(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"18 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1308-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.