Wear and corrosion behaviour of the cryogenically treated tungsten carbide coatings

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
A. Govande, B. Ratna Sunil, R. Dumpala
{"title":"Wear and corrosion behaviour of the cryogenically treated tungsten carbide coatings","authors":"A. Govande, B. Ratna Sunil, R. Dumpala","doi":"10.1080/02670844.2023.2218204","DOIUrl":null,"url":null,"abstract":"ABSTRACT The WC–12Co coatings were deposited on SS 410 substrates using a high-velocity oxygen fuel (HVOF) process and the coatings were heat-treated at 750°C for 1 h in argon environment. Further, the coatings were subjected to cryogenic treatment for 1, 2, 8 and 24 h, and its influence on the reciprocating sliding wear and corrosion characteristics was studied. The structural changes in the coatings after post-treatment were assessed by X-ray diffraction analysis and Raman spectroscopy. Microhardness was improved for cryogenically treated coatings due to the α-Co transformation into ϵ-Co. Cryogenic treatment duration was not having a significant effect on the microhardness values. However, the specific wear rate was influenced by the cryogenic treatment duration. Also, corrosion resistance was increased with the increased cryogenic treatment duration. The protective layers consisting of WO3 and Co3O4 phases formed during the cryogenic treatment are attributed to the improved corrosion resistance of the coatings.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"326 - 338"},"PeriodicalIF":2.4000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2218204","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The WC–12Co coatings were deposited on SS 410 substrates using a high-velocity oxygen fuel (HVOF) process and the coatings were heat-treated at 750°C for 1 h in argon environment. Further, the coatings were subjected to cryogenic treatment for 1, 2, 8 and 24 h, and its influence on the reciprocating sliding wear and corrosion characteristics was studied. The structural changes in the coatings after post-treatment were assessed by X-ray diffraction analysis and Raman spectroscopy. Microhardness was improved for cryogenically treated coatings due to the α-Co transformation into ϵ-Co. Cryogenic treatment duration was not having a significant effect on the microhardness values. However, the specific wear rate was influenced by the cryogenic treatment duration. Also, corrosion resistance was increased with the increased cryogenic treatment duration. The protective layers consisting of WO3 and Co3O4 phases formed during the cryogenic treatment are attributed to the improved corrosion resistance of the coatings.
低温处理碳化钨涂层的磨损和腐蚀行为
摘要采用高速氧燃料(HVOF)工艺在SS 410基底上沉积WC–12Co涂层,并在750°C下对涂层进行1 h。此外,对涂层进行深冷处理1、2、8和24 h、 研究了其对往复滑动磨损和腐蚀特性的影响。通过X射线衍射分析和拉曼光谱评估后处理后涂层的结构变化。低温处理涂层的显微硬度由于α-Co转变为ε-Co而得到改善。低温处理时间对显微硬度值没有显著影响。然而,比磨损率受到深冷处理持续时间的影响。耐腐蚀性也随着深冷处理时间的增加而增加。在低温处理过程中形成的由WO3和Co3O4相组成的保护层归因于涂层的耐腐蚀性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信