Yuki Nishida, Darah A Scruggs, Edward Ayoub, Lauren B Ostermann, Tallie Patsilevas, V. Ruvolo, Poo Yee Mak, B. Carter, S. Boettcher, A. Maiti, K. Sasaki, Qianxiang Zhou, Zhaohui Yang, H. Yan, Liandong Ma, M. Andreeff
{"title":"Abstract A31: C-MYC Targeting by Degradation: Novel Dual c-MYC/GSPT1 Degrader GT19715 Induces TP53-independent Cell Death in MYC-amplified Acute Myeloid Leukemia and Lymphomas","authors":"Yuki Nishida, Darah A Scruggs, Edward Ayoub, Lauren B Ostermann, Tallie Patsilevas, V. Ruvolo, Poo Yee Mak, B. Carter, S. Boettcher, A. Maiti, K. Sasaki, Qianxiang Zhou, Zhaohui Yang, H. Yan, Liandong Ma, M. Andreeff","doi":"10.1158/2643-3249.aml23-a31","DOIUrl":null,"url":null,"abstract":"\n The oncoprotein c-MYC, a major regulator of the epigenome and transcriptome, is dysregulated in 70% of all human cancers. MYC is highly expressed in Burkitt lymphoma and TP53 mutant and venetoclax (ven) resistant AML (Sallman, Blood 2021, Nishida, ASH 2021). However, targeting c-Myc or the MYC pathway has not been successful and remains a major unmet clinical need. We developed the first cereblon E3 ligase modulators (CELMoDs) for c-MYC: GT19630 and GT19715 (salt form of GT19630). C-MYC was one of the top decreased proteins in chromatin-enriched proteomics, was pulled down by biotinylated GT19630 in in vitro affinity purification assay and was degraded with IC50 of 0.33 nM in MYC-amplified HL-60 cells. Proteasome inhibitor ixazomib completely blocked c-MYC reduction, suggesting a CRL4CRBN-dependent degradation. Blood cancer cell lines responded to GT19715 greater than other cancer cell lines such as lung, breast and brain tumors in a broad cell line panel, providing rationale to develop the degrader in hematologic malignancies. In agreement with other CELMoDs, proteomic analyses revealed degradation of translation termination factor GSPT1 (G1 to S phase transition proteins 1), an important factor in LSC survival Whereas a selective GSPT1 degrader CC-90009 reduced GSPT1 protein levels but not c-MYC, GT19715 reduced both c-MYC and GSPT1 and exerted a 20x higher cytoreduction than CC-90009 (IC50 of 1.8 nM vs 40.4 nM for GT19715 and CC-90009, respectively) in HL-60 cells. GT19630 degraded c-MYC and GSPT1 and inhibited tumor growth in a xenograft model with HL-60 cells. GT19715 eliminated circulating blasts and prolonged survival in the systemic Burkitt lymphoma model (Daudi). GT19715 significantly reduced human CD45+ AML blasts in peripheral blood, bone marrow (BM) and spleens compared to vehicle controls in vivo in a chemotherapy-resistant AML PDX model. MV4;11 venetoclax resistant (VR) cells demonstrated elevated protein levels of c-MYC and GSPT1 and GT19715 induced 4log10 cytoreduction in BM and prolonged survival of mice with MV4;11 VR cells. Baseline c-Myc protein levels associated with sensitivity to GT19715 in MOLM-13 cells with CRISPR engineered knockout/mutations of TP53 (R2 = 0.86, P = 0.02). GT19715 induced comparable cell death in primary AML samples with wild-type or mutant TP53 (95.4% and 91.7% cytoreduction, P = 0.48 for wild-type and mutant TP53 samples at 64 nM of GT19715, respectively). CD34+ AML cells were more susceptible to GT19715 than CD34- AML cells, suggesting a greater efficacy in AML stem/progenitor than in more mature AML cells. Notably, single cell mass cytometry revealed that CD34+ AML cells had higher c-MYC protein levels than CD34+ normal BM cells and GT19715 reduced c-Myc levels in CD34+ AML but not normal BM cells. GT19715 induced greater cytoreduction in CD34+ AML than in normal BM cells, suggesting a therapeutic window. Conclusions: The novel dual c-MYC/GSPT1 degrader GT19715 exerts TP53 independent preclinical anti-lymphoma and -leukemia efficacy, providing rationale for its clinical development.\n Citation Format: Yuki Nishida, Darah A Scruggs, Edward Ayoub, Lauren B Ostermann, Tallie Patsilevas, Vivian R Ruvolo, Po Yee Mak, Bing Z. Carter, Steffen Boettcher, Abhishek Maiti, Koji Sasaki, Qianxiang Zhou, Zhaohui Yang, Honghua Yan, Liandong Ma, Michael Andreeff. C-MYC Targeting by Degradation: Novel Dual c-MYC/GSPT1 Degrader GT19715 Induces TP53-independent Cell Death in MYC-amplified Acute Myeloid Leukemia and Lymphomas [abstract]. In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr A31.","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":" ","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3249.aml23-a31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The oncoprotein c-MYC, a major regulator of the epigenome and transcriptome, is dysregulated in 70% of all human cancers. MYC is highly expressed in Burkitt lymphoma and TP53 mutant and venetoclax (ven) resistant AML (Sallman, Blood 2021, Nishida, ASH 2021). However, targeting c-Myc or the MYC pathway has not been successful and remains a major unmet clinical need. We developed the first cereblon E3 ligase modulators (CELMoDs) for c-MYC: GT19630 and GT19715 (salt form of GT19630). C-MYC was one of the top decreased proteins in chromatin-enriched proteomics, was pulled down by biotinylated GT19630 in in vitro affinity purification assay and was degraded with IC50 of 0.33 nM in MYC-amplified HL-60 cells. Proteasome inhibitor ixazomib completely blocked c-MYC reduction, suggesting a CRL4CRBN-dependent degradation. Blood cancer cell lines responded to GT19715 greater than other cancer cell lines such as lung, breast and brain tumors in a broad cell line panel, providing rationale to develop the degrader in hematologic malignancies. In agreement with other CELMoDs, proteomic analyses revealed degradation of translation termination factor GSPT1 (G1 to S phase transition proteins 1), an important factor in LSC survival Whereas a selective GSPT1 degrader CC-90009 reduced GSPT1 protein levels but not c-MYC, GT19715 reduced both c-MYC and GSPT1 and exerted a 20x higher cytoreduction than CC-90009 (IC50 of 1.8 nM vs 40.4 nM for GT19715 and CC-90009, respectively) in HL-60 cells. GT19630 degraded c-MYC and GSPT1 and inhibited tumor growth in a xenograft model with HL-60 cells. GT19715 eliminated circulating blasts and prolonged survival in the systemic Burkitt lymphoma model (Daudi). GT19715 significantly reduced human CD45+ AML blasts in peripheral blood, bone marrow (BM) and spleens compared to vehicle controls in vivo in a chemotherapy-resistant AML PDX model. MV4;11 venetoclax resistant (VR) cells demonstrated elevated protein levels of c-MYC and GSPT1 and GT19715 induced 4log10 cytoreduction in BM and prolonged survival of mice with MV4;11 VR cells. Baseline c-Myc protein levels associated with sensitivity to GT19715 in MOLM-13 cells with CRISPR engineered knockout/mutations of TP53 (R2 = 0.86, P = 0.02). GT19715 induced comparable cell death in primary AML samples with wild-type or mutant TP53 (95.4% and 91.7% cytoreduction, P = 0.48 for wild-type and mutant TP53 samples at 64 nM of GT19715, respectively). CD34+ AML cells were more susceptible to GT19715 than CD34- AML cells, suggesting a greater efficacy in AML stem/progenitor than in more mature AML cells. Notably, single cell mass cytometry revealed that CD34+ AML cells had higher c-MYC protein levels than CD34+ normal BM cells and GT19715 reduced c-Myc levels in CD34+ AML but not normal BM cells. GT19715 induced greater cytoreduction in CD34+ AML than in normal BM cells, suggesting a therapeutic window. Conclusions: The novel dual c-MYC/GSPT1 degrader GT19715 exerts TP53 independent preclinical anti-lymphoma and -leukemia efficacy, providing rationale for its clinical development.
Citation Format: Yuki Nishida, Darah A Scruggs, Edward Ayoub, Lauren B Ostermann, Tallie Patsilevas, Vivian R Ruvolo, Po Yee Mak, Bing Z. Carter, Steffen Boettcher, Abhishek Maiti, Koji Sasaki, Qianxiang Zhou, Zhaohui Yang, Honghua Yan, Liandong Ma, Michael Andreeff. C-MYC Targeting by Degradation: Novel Dual c-MYC/GSPT1 Degrader GT19715 Induces TP53-independent Cell Death in MYC-amplified Acute Myeloid Leukemia and Lymphomas [abstract]. In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr A31.
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.