Machine learning approach to predict the depression in job sectors in Bangladesh

Q1 Psychology
Nazmun Nessa Moon , Asma Mariam , Shayla Sharmin , Mohammad Monirul Islam , Fernaz Narin Nur , Nebadita Debnath
{"title":"Machine learning approach to predict the depression in job sectors in Bangladesh","authors":"Nazmun Nessa Moon ,&nbsp;Asma Mariam ,&nbsp;Shayla Sharmin ,&nbsp;Mohammad Monirul Islam ,&nbsp;Fernaz Narin Nur ,&nbsp;Nebadita Debnath","doi":"10.1016/j.crbeha.2021.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Depression is a significant and growing issue that substantially affects an individual's way of life, interrupting typical functioning and blocking viewpoints. At the same time, they may be unaware they are suffering such a problem. This research focuses on depression prediction and determines which sex is sadder and more satisfied with their employment. The writers gathered data from both men and females to get accurate statistics. We used factor analysis, Random Forest Classifier, Random Forest Regression, Naive Bayes, and K Neighbors Classifier algorithms to determine which sources of stress predict stress-related symptoms in people exploring job satisfaction as predicted and job depression by age, monthly income, gender, occupation, children, city, previous job, marital status, and current job satisfaction level.</p></div>","PeriodicalId":72746,"journal":{"name":"Current research in behavioral sciences","volume":"2 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666518221000450/pdfft?md5=3801471152a08dceebcacd8c5e1da794&pid=1-s2.0-S2666518221000450-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in behavioral sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666518221000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 7

Abstract

Depression is a significant and growing issue that substantially affects an individual's way of life, interrupting typical functioning and blocking viewpoints. At the same time, they may be unaware they are suffering such a problem. This research focuses on depression prediction and determines which sex is sadder and more satisfied with their employment. The writers gathered data from both men and females to get accurate statistics. We used factor analysis, Random Forest Classifier, Random Forest Regression, Naive Bayes, and K Neighbors Classifier algorithms to determine which sources of stress predict stress-related symptoms in people exploring job satisfaction as predicted and job depression by age, monthly income, gender, occupation, children, city, previous job, marital status, and current job satisfaction level.

Abstract Image

机器学习方法预测孟加拉国就业部门的萧条
抑郁症是一个重要且日益严重的问题,它会严重影响个人的生活方式,干扰正常的功能并阻碍人们的观点。与此同时,他们可能没有意识到自己正在遭受这样的问题。这项研究的重点是抑郁预测,并确定哪个性别更悲伤,对工作更满意。作者收集了男性和女性的数据,以获得准确的统计数据。我们使用因子分析、随机森林分类器、随机森林回归、朴素贝叶斯和K邻居分类器算法来确定在年龄、月收入、性别、职业、子女、城市、以前的工作、婚姻状况和当前的工作满意度水平方面,哪些压力来源可以预测人们在探索工作满意度和工作抑郁时的压力相关症状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current research in behavioral sciences
Current research in behavioral sciences Behavioral Neuroscience
CiteScore
7.90
自引率
0.00%
发文量
0
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信