Mechanosensitivity response of epithelial HT29 cells on titanium dioxide nanotube array surface via CK8 protein expression

Q4 Chemistry
R. Mydin, S. Sreekantan, R. Hazan, Ekhlas Qaid Qazem, M. F. Wajidi
{"title":"Mechanosensitivity response of epithelial HT29 cells on titanium dioxide nanotube array surface via CK8 protein expression","authors":"R. Mydin, S. Sreekantan, R. Hazan, Ekhlas Qaid Qazem, M. F. Wajidi","doi":"10.1504/IJNBM.2019.10023326","DOIUrl":null,"url":null,"abstract":"Titanium dioxide nanotube arrays (TNA) have been proposed as novel nanosurface modifications for biomaterial implants and nanomedicine applications. However, the molecular mechanisms of cell-TNA mechanosensitivity are poorly understood. Therefore, this study investigates the effect of cell-TNA mechanosensitivity activity via cytokeratin (CK) protein marker. Field emission scanning electron microscopy (FESEM) characterisation was conducted on TNA with epithelial HT29 cells. The CK protein marker was also analysed using immunofluorescent staining and immunoblotting techniques. FESEM results showed that cells grown on TNA exhibited enhanced cytoplasmic extension and spreading characteristics. Furthermore, the cell interaction with TNA nanosurface showed high CK8 expression, thereby indicating the clustering or aggregation of the cytoskeleton proteins. Findings suggested that epithelial HT29 cells on TNA nanotopography may involve cytoskeleton mechanosensitivity response for cellular adaptation activity.","PeriodicalId":13999,"journal":{"name":"International Journal of Nano and Biomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nano and Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNBM.2019.10023326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3

Abstract

Titanium dioxide nanotube arrays (TNA) have been proposed as novel nanosurface modifications for biomaterial implants and nanomedicine applications. However, the molecular mechanisms of cell-TNA mechanosensitivity are poorly understood. Therefore, this study investigates the effect of cell-TNA mechanosensitivity activity via cytokeratin (CK) protein marker. Field emission scanning electron microscopy (FESEM) characterisation was conducted on TNA with epithelial HT29 cells. The CK protein marker was also analysed using immunofluorescent staining and immunoblotting techniques. FESEM results showed that cells grown on TNA exhibited enhanced cytoplasmic extension and spreading characteristics. Furthermore, the cell interaction with TNA nanosurface showed high CK8 expression, thereby indicating the clustering or aggregation of the cytoskeleton proteins. Findings suggested that epithelial HT29 cells on TNA nanotopography may involve cytoskeleton mechanosensitivity response for cellular adaptation activity.
二氧化钛纳米管阵列表面上皮HT29细胞通过CK8蛋白表达的机制敏感性反应
二氧化钛纳米管阵列(TNA)已被提议作为新型纳米表面修饰物用于生物材料植入和纳米医学应用。然而,细胞TNA机械敏感性的分子机制尚不清楚。因此,本研究通过细胞角蛋白(CK)蛋白标记物来研究细胞TNA机械敏感性活性的影响。对具有上皮HT29细胞的TNA进行场发射扫描电子显微镜(FESEM)表征。CK蛋白标记物也使用免疫荧光染色和免疫印迹技术进行分析。FESEM结果显示,在TNA上生长的细胞表现出增强的细胞质延伸和铺展特性。此外,细胞与TNA纳米表面的相互作用显示出高CK8表达,从而表明细胞骨架蛋白的聚集或聚集。研究结果表明,TNA纳米形貌上的上皮HT29细胞可能涉及细胞骨架对细胞适应活动的机械敏感性反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nano and Biomaterials
International Journal of Nano and Biomaterials Chemistry-Physical and Theoretical Chemistry
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: In recent years, frontiers of research in engineering, science and technology have been driven by developments in nanomaterials, encompassing a diverse range of disciplines such as materials science, biomedical engineering, nanomedicine and biology, manufacturing technology, biotechnology, nanotechnology, and nanoelectronics. IJNBM provides an interdisciplinary vehicle covering these fields. Advanced materials inspired by biological systems and processes are likely to influence the development of novel technologies for a wide variety of applications from vaccines to artificial tissues and organs to quantum computers. Topics covered include Nanostructured materials/surfaces/interfaces Synthesis of nanostructures Biological/biomedical materials Artificial organs/tissues Tissue engineering Bioengineering materials Medical devices Functional/structural nanomaterials Carbon-based materials Nanomaterials characterisation Novel applications of nanomaterials Modelling of behaviour of nanomaterials Nanomaterials for biomedical applications Biological response to nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信