R. Mydin, S. Sreekantan, R. Hazan, Ekhlas Qaid Qazem, M. F. Wajidi
{"title":"Mechanosensitivity response of epithelial HT29 cells on titanium dioxide nanotube array surface via CK8 protein expression","authors":"R. Mydin, S. Sreekantan, R. Hazan, Ekhlas Qaid Qazem, M. F. Wajidi","doi":"10.1504/IJNBM.2019.10023326","DOIUrl":null,"url":null,"abstract":"Titanium dioxide nanotube arrays (TNA) have been proposed as novel nanosurface modifications for biomaterial implants and nanomedicine applications. However, the molecular mechanisms of cell-TNA mechanosensitivity are poorly understood. Therefore, this study investigates the effect of cell-TNA mechanosensitivity activity via cytokeratin (CK) protein marker. Field emission scanning electron microscopy (FESEM) characterisation was conducted on TNA with epithelial HT29 cells. The CK protein marker was also analysed using immunofluorescent staining and immunoblotting techniques. FESEM results showed that cells grown on TNA exhibited enhanced cytoplasmic extension and spreading characteristics. Furthermore, the cell interaction with TNA nanosurface showed high CK8 expression, thereby indicating the clustering or aggregation of the cytoskeleton proteins. Findings suggested that epithelial HT29 cells on TNA nanotopography may involve cytoskeleton mechanosensitivity response for cellular adaptation activity.","PeriodicalId":13999,"journal":{"name":"International Journal of Nano and Biomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nano and Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNBM.2019.10023326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3
Abstract
Titanium dioxide nanotube arrays (TNA) have been proposed as novel nanosurface modifications for biomaterial implants and nanomedicine applications. However, the molecular mechanisms of cell-TNA mechanosensitivity are poorly understood. Therefore, this study investigates the effect of cell-TNA mechanosensitivity activity via cytokeratin (CK) protein marker. Field emission scanning electron microscopy (FESEM) characterisation was conducted on TNA with epithelial HT29 cells. The CK protein marker was also analysed using immunofluorescent staining and immunoblotting techniques. FESEM results showed that cells grown on TNA exhibited enhanced cytoplasmic extension and spreading characteristics. Furthermore, the cell interaction with TNA nanosurface showed high CK8 expression, thereby indicating the clustering or aggregation of the cytoskeleton proteins. Findings suggested that epithelial HT29 cells on TNA nanotopography may involve cytoskeleton mechanosensitivity response for cellular adaptation activity.
期刊介绍:
In recent years, frontiers of research in engineering, science and technology have been driven by developments in nanomaterials, encompassing a diverse range of disciplines such as materials science, biomedical engineering, nanomedicine and biology, manufacturing technology, biotechnology, nanotechnology, and nanoelectronics. IJNBM provides an interdisciplinary vehicle covering these fields. Advanced materials inspired by biological systems and processes are likely to influence the development of novel technologies for a wide variety of applications from vaccines to artificial tissues and organs to quantum computers. Topics covered include Nanostructured materials/surfaces/interfaces Synthesis of nanostructures Biological/biomedical materials Artificial organs/tissues Tissue engineering Bioengineering materials Medical devices Functional/structural nanomaterials Carbon-based materials Nanomaterials characterisation Novel applications of nanomaterials Modelling of behaviour of nanomaterials Nanomaterials for biomedical applications Biological response to nanomaterials.