Farouk K. El-Baz , Abeer Salama , Sami I. Ali , Hadeer A. El-Hashemy
{"title":"Dunaliella salina chitosan nanoparticles as a promising wound healing vehicles: In-vitro and in-vivo study","authors":"Farouk K. El-Baz , Abeer Salama , Sami I. Ali , Hadeer A. El-Hashemy","doi":"10.1016/j.onano.2023.100165","DOIUrl":null,"url":null,"abstract":"<div><p><em>Dunaliella salina</em>, a green microalga, is among the main sources of bioactive β-carotene and zeaxanthin. Hence, it will be investigated for its antioxidant effectiveness in wound healing. The current study's objective is to create new chitosan nanoparticle loaded <em>D. salina</em> hexane: ethyl acetate extract (HEAE-CNPs) and methanol extract (ME-CNPs) to be used in accelerating wound healing <em>in-vivo.</em> Double emulsion technique was utilized to prepare the nanoparticles. The prepared HEAE-CNPs and ME-CNPs were examined for <em>in-vitro</em> release and <em>in-vivo</em> wound healing efficacy in Wistar rats. Results confirmed that <em>D. salina</em> hexane:ethyl acetate extract (HEAE) contains 19.167 mg/g β-carotene and 16.196 mg/g zeaxanthin, whereas the extract of methanol (ME) contains only small amounts of zeaxanthin 0.313 mg/g as quantified by HPLC. The <em>D. salina</em> loaded chitosan gel greatly slowed the total carotenoids release, according to the <em>in-vitro</em> release assays, in comparison with <em>D. salina</em> nanoparticle dispersion with a particle size in the nanorange. By decreasing factor alpha (TNF-α) of tumor necrosis and increasing vascular endothelial growth factor (VEGF) and collagen skin contents, both HEAE-CNPs and ME-CNPs demonstrated wound healing and regeneration.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"12 ","pages":"Article 100165"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Dunaliella salina, a green microalga, is among the main sources of bioactive β-carotene and zeaxanthin. Hence, it will be investigated for its antioxidant effectiveness in wound healing. The current study's objective is to create new chitosan nanoparticle loaded D. salina hexane: ethyl acetate extract (HEAE-CNPs) and methanol extract (ME-CNPs) to be used in accelerating wound healing in-vivo. Double emulsion technique was utilized to prepare the nanoparticles. The prepared HEAE-CNPs and ME-CNPs were examined for in-vitro release and in-vivo wound healing efficacy in Wistar rats. Results confirmed that D. salina hexane:ethyl acetate extract (HEAE) contains 19.167 mg/g β-carotene and 16.196 mg/g zeaxanthin, whereas the extract of methanol (ME) contains only small amounts of zeaxanthin 0.313 mg/g as quantified by HPLC. The D. salina loaded chitosan gel greatly slowed the total carotenoids release, according to the in-vitro release assays, in comparison with D. salina nanoparticle dispersion with a particle size in the nanorange. By decreasing factor alpha (TNF-α) of tumor necrosis and increasing vascular endothelial growth factor (VEGF) and collagen skin contents, both HEAE-CNPs and ME-CNPs demonstrated wound healing and regeneration.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.