Development of self-assembled polygalacturonic acid-peptide composites and their interactions with mesenchymal stem cells for potential applications in tendon tissue engineering

Q4 Chemistry
Grant A. Knoll, Harrison T. Pajovich, Steven M. Romanelli, I. Banerjee
{"title":"Development of self-assembled polygalacturonic acid-peptide composites and their interactions with mesenchymal stem cells for potential applications in tendon tissue engineering","authors":"Grant A. Knoll, Harrison T. Pajovich, Steven M. Romanelli, I. Banerjee","doi":"10.1504/IJNBM.2019.10018706","DOIUrl":null,"url":null,"abstract":"We have developed a new biomimetic scaffold for potential applications in tendon tissue engineering (TE). The scaffold template was synthesised by conjugating polygalacturonic acid with the dipeptide leucyl-leucine to mimic the leucine rich proteoglycans found in the extracellular matrix (ECM) of tenocytes. To the template, type I collagen and an elastin derived peptide were incorporated in order to form the final PG-Leu-Leu-Col-El scaffold. Results indicated the formation of gelatinous, fibrous scaffolds. DSC analysis showed phase changes that included crystallisation and thermal melting due to re-organisation of the scaffold components. Young's modulus was determined to be 832 ± 2 MPa. Rheology studies showed that the scaffold maintained a constant G´ / G˝ ratio over a wide range of angular frequency. Cell studies with bone marrow derived mesenchymal stem cells (BMSC) indicated that the scaffolds promoted cell proliferation and formed three dimensional cell-scaffold matrices. This newly developed scaffold may open new opportunities for tissue engineering applications.","PeriodicalId":13999,"journal":{"name":"International Journal of Nano and Biomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nano and Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNBM.2019.10018706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a new biomimetic scaffold for potential applications in tendon tissue engineering (TE). The scaffold template was synthesised by conjugating polygalacturonic acid with the dipeptide leucyl-leucine to mimic the leucine rich proteoglycans found in the extracellular matrix (ECM) of tenocytes. To the template, type I collagen and an elastin derived peptide were incorporated in order to form the final PG-Leu-Leu-Col-El scaffold. Results indicated the formation of gelatinous, fibrous scaffolds. DSC analysis showed phase changes that included crystallisation and thermal melting due to re-organisation of the scaffold components. Young's modulus was determined to be 832 ± 2 MPa. Rheology studies showed that the scaffold maintained a constant G´ / G˝ ratio over a wide range of angular frequency. Cell studies with bone marrow derived mesenchymal stem cells (BMSC) indicated that the scaffolds promoted cell proliferation and formed three dimensional cell-scaffold matrices. This newly developed scaffold may open new opportunities for tissue engineering applications.
自组装聚半乳糖醛酸-肽复合物及其与间充质干细胞的相互作用在肌腱组织工程中的潜在应用
我们开发了一种新的仿生支架,用于肌腱组织工程(TE)的潜在应用。支架模板由聚半乳糖醛酸与二肽亮氨酸偶联合成,以模拟在细胞外基质(ECM)中发现的富含亮氨酸的蛋白聚糖。在模板上加入I型胶原蛋白和弹性蛋白衍生肽,以形成最终的PG-Leu-Leu-Col-El支架。结果表明形成了胶状、纤维状的支架。DSC分析显示,由于支架组件的重组,相变包括结晶和热熔化。杨氏模量为832±2 MPa。流变学研究表明,支架在较宽的角频率范围内保持恒定的G′/ G′。骨髓间充质干细胞(BMSC)的细胞研究表明,该支架可促进细胞增殖并形成三维细胞-支架基质。这种新开发的支架可能为组织工程应用开辟新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nano and Biomaterials
International Journal of Nano and Biomaterials Chemistry-Physical and Theoretical Chemistry
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: In recent years, frontiers of research in engineering, science and technology have been driven by developments in nanomaterials, encompassing a diverse range of disciplines such as materials science, biomedical engineering, nanomedicine and biology, manufacturing technology, biotechnology, nanotechnology, and nanoelectronics. IJNBM provides an interdisciplinary vehicle covering these fields. Advanced materials inspired by biological systems and processes are likely to influence the development of novel technologies for a wide variety of applications from vaccines to artificial tissues and organs to quantum computers. Topics covered include Nanostructured materials/surfaces/interfaces Synthesis of nanostructures Biological/biomedical materials Artificial organs/tissues Tissue engineering Bioengineering materials Medical devices Functional/structural nanomaterials Carbon-based materials Nanomaterials characterisation Novel applications of nanomaterials Modelling of behaviour of nanomaterials Nanomaterials for biomedical applications Biological response to nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信