{"title":"Lightweight ultra-wideband antenna array equipped with thin frequency selective surface for high-gain applications","authors":"P. Prasad, S. Singh, Akhilesh Kumar","doi":"10.2478/jee-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract This article begins with an explanation of a frequency selective surface, also known as an FSS, which is used to increase gain across a wide frequency range. The proposed unit design is a modified combination of circular and square elements with two cross dipoles and a T-type structure at the inner side. In the second step of the process, a single wideband antenna that covers the same range as FSS is designed and then analyzed in terms of its gain and radiation patterns. After that, an antenna array was built using the same solo structure in order to take advantage of the benefits that come with using an array system. The array is made up of elements that are CPW fed. A ground-backed T-shaped power divider network with additional shorting pins is used to supply power to the entire array. In the fourth step, an array of the FSS unit cell has been positioned beneath the UWB solo antenna and its array in order to investigate the possibility of improved gain and radiation pattern. The FSS equivalent lumped circuit model is presented here for validation purposes. It has been determined that the results of the experiment and the simulation are consistent with one another. In contrast to the structures that have been reported in the past, the newly developed model possesses a greater bandwidth, a higher gain, and a lower profile.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"396 - 404"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This article begins with an explanation of a frequency selective surface, also known as an FSS, which is used to increase gain across a wide frequency range. The proposed unit design is a modified combination of circular and square elements with two cross dipoles and a T-type structure at the inner side. In the second step of the process, a single wideband antenna that covers the same range as FSS is designed and then analyzed in terms of its gain and radiation patterns. After that, an antenna array was built using the same solo structure in order to take advantage of the benefits that come with using an array system. The array is made up of elements that are CPW fed. A ground-backed T-shaped power divider network with additional shorting pins is used to supply power to the entire array. In the fourth step, an array of the FSS unit cell has been positioned beneath the UWB solo antenna and its array in order to investigate the possibility of improved gain and radiation pattern. The FSS equivalent lumped circuit model is presented here for validation purposes. It has been determined that the results of the experiment and the simulation are consistent with one another. In contrast to the structures that have been reported in the past, the newly developed model possesses a greater bandwidth, a higher gain, and a lower profile.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications