Jiangce Chen, Justin Pierce, Glen Williams, Timothy W. Simpson, N. Meisel, Sneha Prabha Narra, Christopher McComb
{"title":"ACCELERATING THERMAL SIMULATIONS IN ADDITIVE MANUFACTURING BY TRAINING PHYSICS-INFORMED NEURAL NETWORKS WITH RANDOMLY-SYNTHESIZED DATA","authors":"Jiangce Chen, Justin Pierce, Glen Williams, Timothy W. Simpson, N. Meisel, Sneha Prabha Narra, Christopher McComb","doi":"10.1115/1.4062852","DOIUrl":null,"url":null,"abstract":"\n The temperature history of an additively-manufactured part plays a critical role in determining process-structure-property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in-situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of these applications due to the large space and time scales involved. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with Laser Powder Bed Fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly-synthesized data. This training data is both inexpensive to obtain and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062852","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The temperature history of an additively-manufactured part plays a critical role in determining process-structure-property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in-situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of these applications due to the large space and time scales involved. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with Laser Powder Bed Fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly-synthesized data. This training data is both inexpensive to obtain and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping